同位素水文学: 综述

文/Lucía Ortega和Laura Gil

一位素技术让科学家能够了解水 循环的构成,帮助他们更好地 评价水量、水质和水的可持续性。

在水循环方面,人们了解最少的 是地下水。科学家利用天然存在的放 射性同位素作为示踪剂来查明地下水 是否在得到补给、从何而来、在地下 如何运动、是否容易受到污染和不断 变化的气候状况的影响。

不同地方的水具有不同的同位素 特征或独特的"指纹"。科学家利用 这些"指纹"追踪整个水循环过程中 水在流经路径上的运动:从蒸发、沉 淀、渗滤到径流和蒸腾,然后回到海 洋或大气,如此往复。

然而, 什么是同位素?

化学元素(如氢)完全由一种 原子构成,而同一种原子的种类各有 不同,这些不同种类的原子就是同位 素,它们具有相同的化学特性,有相 同数量的质子和电子, 但中子数不 同。中子数的差别使得每种同位素的 重量不同,而此重量差别就是水文研 究的关键。

同位素水文学既使用稳定同位 素, 也使用不稳定同位素。稳定同位 素具有非放射性, 也就是说它们不发 出辐射。不稳定同位素(亦称为放射 性同位素)经历放射性衰变,因此具 有放射性。

下面简述同位素水文学科学是如 何工作的。

水循环中水的来源和输运

每一个水分子(H,O)都是由两 个氢(H)原子和一个氧(O)原子组 成,但它们并非完全相同:有些原子 的同位素较轻,有些则较重。科学家 们使用精确的分析设备测量水样品中 这些微小的重量差异。为什么呢?

在海水蒸发过程中, 具有较轻同 位素的分子往往优先上升, 形成具有 特定同位素特征的云。这些云层混合 了水分子,水分子以雨的形式降落。 具有较重同位素的水分子最先落下。 随后, 云失去这些较重同位素, 并进 一步向内陆移动, 较轻同位素以更大 比例落下。

水落到地上,充满湖泊、河流和 含水层。通过测量这些水体中重同位 素与轻同位素的比率, 科学家可以破 译水的来源和运动。

地下水年龄

同位素是估算水资源年龄、脆弱 性和可持续性的最直接和最有力的工 具。含水层中的地下水"年老",意味 着水流缓慢,且含水层需要长时间才 能得到补给。相反,"年轻"地下水很 容易迅速得到雨水更新,但也很容易 受到污染和不断变化的气候状况的影 响。了解水的年龄使科学家和政府能

够很好地掌握含水层的补给率。

在水文学中,存在于水中的一些天然存在的放射性同位素,如氚(³H)、碳-14(¹⁴C)和惰性气体放射性同位素,被用于估算地下水年龄。此年龄可能从数月到数百万年不等。

这些同位素随着时间衰减,其 丰度也逐年减少。较高的值意味着 水"较年轻",而较低的值意味着 水"较年老"。例如,可检测到氚含量 的地下水可能有60年左右的历史,而 不含氚的地下水则必然更古老。氚用 于测定新近补给的地下水,即小于60 年的地下水,而碳-14用于测定4万年以 上的水,氪-81用于测定百万年以上的 水(见第21页)。

水质

地表水和地下水中的污染物来源 多种多样,如农业、工业和人类排泄 物,也可能由于含水层中发生的地球 化学过程而自然存在。农业、工业和 家庭产生的污染物种类各不相同。通 过研究污染物的化学和同位素组成, 科学家可以确定其来源。

例如,由氮和氧形成的硝酸根离子(NO₃)是一种常见的污染物。氮有两种不同重量的稳定同位素。人类排泄物和肥料中氮的重量差别是不同的。肥料用的是空气中的氮,而人类和动物则经过一个生物过程将氮转化为不同的形式。因此,可以根据这些同位素的重量差别来识别不同来源的污染物。

了解污染物的来源是解决水质问题的第一步。同位素水文学家收集的数据对决策者的战略研究很有帮助。

原子能机构通过促进同位素技术 应用,将科学专门技术传授给当地水 专业人员,为世界各地的科学家提供 支持。要进一步了解我们如何做到这 一点,请继续阅读。

