

X-ray: The emerging alternative to gamma irradiation

October 13th 2015

#### Regional Meeting on use of E-beam or X-Ray for Phytosanitary Applications

Rick Galloway – IBA



### **Presentation outline**

- Brief introduction of IBA
- Industrial Accelerator applications
- X-ray irradiation, a comparison with Gamma
- Configurations for optimizing X-Ray DUR and throughput
- Reducing OPEX by improving accelerator efficiency
- X-ray systems installed today
- Conclusion



## IBA in a nutshell

- Based in Belgium, listed on Euronext Brussels
- Focused on particle accelerators
- >400 accelerators worldwide
- 2014 sales of €220 million
- 1,200 people worldwide, 40 nationalities
- 15 offices on 3 continents







### **IBA Main Activities**



#### **Cancer treatment**

Accurate protons Minimized side effects

#### Patient and machine QA

Calibration, validation and QA Used in most hospitals



Industrial



#### **Cancer diagnostic**

160+ Cyclotrons installed Synthera multi-tracer system

#### Industrial applications Medical Device Sterilization

Polymer crosslinking Etc...





### **IBA Industrial's Product Portfolio**

Dynamitron 0.5 -> 5 MeV Up to 160 mA Electron beam X-ray



Main application Material Modification / Crosslinking Rhodotron 3 -> 10 MeV 0 -> 560 kW Electron beam X-ray



Main application Medical device sterilization



### **IBA Industrial - Installed Base**



# **Rhodotron and Dynamitron product ranges**

#### Rhodotron product range

| - |
|---|
|---|



**Coming soon** : very compact TT50

#### **Dynamitron product range \***



Dynamitron<sup>®</sup> 800 KeV 800 KeV, up to 160 mA (Optional Self-shielding)

550 KeV, up to 160 mA (Optional Self-shielding)

Dynamitron<sup>®</sup> 1 MeV 1000 KeV, up to 100 mA (Optional Self-shielding)



1.5 MeV, up to 65 mA



Dynamitron<sup>®</sup> 3 MeV

3 MeV, up to 50 mA

5 MeV, up to 30 mA



\*Other models can be available on request



## **Irradiation Treatment Techniques overview**





### Monte Carlo results for different treatments



• Better DUR = Better Quality

. Iba

www.iba-industrial.com

# Dose Uniformity Ratio (DUR)

Homogenity comparison Gamma irradiator vs. X- Ray unit



synergyhealth

- Actual data from operational X-ray facility
- Lower DUR means better treatment quality



# Which configuration for me?

### Dedicated **E-beam** facility

- I want solely to focus on highly efficient E-beam
- I can change the packing of my products for E-beam
- I can't handle a small part of my products but that's OK

### Dedicated X-ray facility

- I want to minimize the product handling and reduce damage
- I want to maintain the pallet and pest protection integrity
- I need high quality treatment with low impact on products

### E-beam and X-ray on one single accelerator

- I want to focus on high efficiency E-beam processing
- But I need X-ray for some high density products





# **Typical E-beam and X-ray configurations**

Rhodotron E-beam 10 MeV E-beam Boxes eXelis X-ray 5 or 7 MeV X-ray Pallets

### Rhodotron Duo 10 MeV E-beam + 5 or 7 MeV X-ray Boxes



E-beam top irradiation





X-ray lateral irradiation

E-beam and X-ray top irradiation



## X-ray advantages



Electrically powered

#### **Flexibility**

C

- > ON / OFF when needed
- Power / Capacity « on Demand »
- Pallet treatment
- Excellent Dose Uniformity
- Short Treatment Time

- $\rightarrow$ no radioactive source, simple regulatory compliance and licensing
- $\rightarrow$  seasonal products, power demand license
- $\rightarrow$  Ability to treat low and high density products, limit material handling and maintain insect control
- $\rightarrow$  limited overdosing because of better dose control (lower DUR)
  - $\rightarrow$  Refrigeration may not be required during treatment

# Pallet Treatment configurations

#### ROTATING

#### 2-SIDED



## **X-ray Product Overlap Configuration**





# **A Typical dedicated X-ray Center**

Animation video





# Which Configuration ?

Here is a case study for estimated throughputs for 2 different density products

### Phytosanitary application

- Products :
  - $\rho = 0.3 \text{ gr/cc} \rightarrow \text{Mangoes}$
  - $\rho = 0.5 \text{ gr/cc} \rightarrow \text{Dates}$
  - Minimum 25 tons per hour
- Doses :
  - D = 400 Gy

#### Accelerator Power :

100 kW (14.3mA @ 7 MeV)
(7.0MeV For products exported to the US)







# Which Treatment Configuration ?

Performance : (MC Simulations benchmarked by measurements)

| <pre>&gt; &lt;2 DUR</pre> | ROTATING |         | 2-SIDED |         |
|---------------------------|----------|---------|---------|---------|
|                           | 1-level  | 2-level | 1-level | 2-level |
| Mangoes (0.3 g/cc)        | 1.54     | 1.57    | 2.16    | 1.58    |
| Dates (0.5 g/cc)          | 1.58     | 1.51    | 2.91    | 2.24    |

| > 25                       | ROTATING |         | 2-SIDED |         |
|----------------------------|----------|---------|---------|---------|
| Throughput (Tons/h/100kW*) | 1-level  | 2-level | 1-level | 2-level |
| Mangoes (0.3 g/cc)         |          |         |         |         |
|                            | 17.27    | 22.83   | 29.37   | 39.59   |
| Dates (0.5 g/cc)           |          |         |         |         |
|                            | 23.68    | 33.78   | 33.09   | 42.58   |

\* Throughout at 5.0MeV will be approximatly 25% lower



## Which Treatment Configuration ?

### Performance :

|  | < 2 DUR            | ROTATING |         | 2-SIDED |         |
|--|--------------------|----------|---------|---------|---------|
|  |                    | 1-level  | 2-level | 1-level | 2-level |
|  | Mangoes (0.3 g/cc) | 1.54     | 1.57    | 2.16    | 1.58    |
|  | Dates (0.5 g/cc)   | 1.58     | 1.51    | 2.91    | 2.24    |

| > 25                       | ROTATING |         | 2-SIDED |         |
|----------------------------|----------|---------|---------|---------|
| Throughput (Tons/h/100kW*) | 1-level  | 2-level | 1-level | 2-level |
| Mangoes (0.3 g/cc)         |          |         |         |         |
|                            | 17.27    | 22.83   | 29.37   | 39.59   |
| Dates (0.5 g/cc)           |          |         |         |         |
|                            | 23.68    | 33.78   | 33.09   | 42.58   |

\* Throughout at 5.0MeV will be approximatly 25% lower



## Which Treatment Configuration ?

### Performance :

| < 2 DUR                                        | ROTATING       |                | 2-SIDED        |           |
|------------------------------------------------|----------------|----------------|----------------|-----------|
|                                                | 1-level        | 2-level        | 1-level        | 2 level   |
| Mangoes (0.3 g/cc)                             | 1.54           | 1.57           | 2.16           | 1.58      |
|                                                |                |                |                |           |
| Dates (0.5 g/cc)                               | 1.58           | 1.51           | 2.91           | 2.24      |
|                                                |                |                |                |           |
| > 25                                           |                |                |                |           |
| Every sustomer's situation is unique and requi | res a customiz | ed optimal con | figuration,2de | ending on |
| Throughout(Den/sify(Rawg)                      | 1-level        | 2-level        | 1-level        | 2-level   |
| Mapplesquestion (Dmin required, Dmax allowed)  |                |                |                |           |
|                                                | 17.27          | 22.83          | 29.37          | 39.59     |
| Dates (0.5 g/cc)                               |                |                |                |           |
|                                                | 23.68          | 33.78          | 33.09          | 42.58     |

\* Throughout at 5.0MeV will be approximatly 25% lower



## **Rhodotron Reducing OPEX**

#### **Energy efficiency**

(beam power / total power consumption)



Assumptions: 10 MeV 10 MeV TT200 www.iba-industrial.com



## High power X-ray systems available



### Our vision: X-ray and E-Beam are the alternative to Gamma

- We believe the industry needs an alternative irradiation technology to radioactive sources
- We believe that X-ray Treatment (and electron beam) is the alternative because:
  - Equivalent or **better Quality treatment**
  - Proven Reliability and performance of E-Beam and X-Ray
  - X-Ray provides for maintaining pallet and pest netting
  - X-Ray reduces product handling, improving quality
  - Electrically powered, electricity is the energy of the future increasingly produced through renewable energy sources, known operational costs
  - No packaging or configuration changes required when processing in X-Ray instead of gamma pallets





# **Gracias!**

Richard Galloway Director, Sales & Business Development



IBA Industrial 151 Heartland Blvd | Edgewood, NY 11717-8374 | USA Tel.: + 1 631-595-4117 | Fax: + 1 631 254 6810 rick.galloway@iba-group.com | www.iba-worldwide.com

