

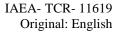
INTERNATIONAL ATOMIC ENERGY AGENCY

REPORT

EXTERNAL EVENTS SAFETY SECTION SITE AND EXTERNAL EVENTS DESIGN (SEED) REVIEW SERVICE

Safety of the Belarusian NPP against Site Specific External Hazards

Minsk, Belarus 16–20 January 2017


SITE AND EXTERNAL EVENTS DESIGN REVIEW SERVICES conducted under IAEA Technical Cooperation Project BYE2006/07/01

"Safety of the Belarusian NPP against Site Specific External Hazards"

DEPARTMENT OF TECHNICAL COOPERATION

Division for Europe

DEPARTMENT OF NUCLEAR SAFETY
AND SECURITY
Division of Nuclear Installation Safety

REPORT

EXTERNAL EVENT SAFETY SECTION SITE AND EXTERNAL EVENTS DESIGN (SEED) REVIEW SERVICE

Safety of the Belarusian NPP against Site Specific External Hazards

Mission date: 16–20 January 2017

Location: Minsk, Belarus

Facility: Belarusian Ministry of Energy

Organized by: IAEA

Technical Cooperation Project BYE2006/07/01

IAEA Review Team: RZENTKOWSKI, Greg IAEA, Director of NSNI

COMAN, Ovidiu IAEA, Senior Engineering Safety Officer

ALTINYOLLAR, Ayhan IAEA, Nuclear Safety Officer

DONOVAN, Jeffrey IAEA, Press and Public Information

Officer

SOLLOGOUB, Pierre External Expert (France) KATONA, Tamas External Expert (Hungary)

IAEA-2017

Issue date: 27-04-2017

Rev.: 0

[&]quot;Findings, conclusions and recommendations resulting from the IAEA Programme are intended only to assist national decision makers who have the sole responsibility for the regulation and the safe operation of their nuclear power plants. Moreover, they do not replace a comprehensive safety assessment which needs to be performed in the framework of the national licensing process".

SEED REVIEW SERVICE Safety of the Belarusian NPP against Site Specific External Hazards

CONTENTS

EX	ECUT	TIVE SUMMARY	2
1.	INTI	RODUCTION	4
	1.1.	BACKGROUND	4
	1.2.	OBJECTIVES	4
	1.3.	SCOPE	5
2.	CON	NDUCT OF THE MISSION	6
	2.1.	PREPARATORY WORK	6
	2.2.	REFFERENCE FOR REVIEW	6
	2.3.	SEED MISSION	7
3.	MAI	N FINDINGS	8
	3.2.	SITE CHARACTERIZATION AND SITE DESIGN PARAMETERS	8
	3.3.	SITE MONITORING	8
	3.4.	LESSONS LEARNED FROM THE FUKUSHIMA DAIICHI ACCIDENT	9
4.	CON	ICLUSIONS	10
5.	REF	ERENCES	11
AP	PEND	IX 1 – LIST OF PARTICIPANTS	12
AP	PEND	IX 2 - MISSION PROGRAMME	15
AP	PEND	IX 3 - REVIEW TABLES	16

EXECUTIVE SUMMARY

At the request of Belarusian Government, the IAEA conducted a Site and External Events Design (SEED) mission for the Belarusian Nuclear Power Plant (NPP) situated at the Ostrovets site. The IAEA and Belarusian Ministry of Energy (hereinafter "the Counterpart") agreed on the objectives, scope and the Terms of Reference for the SEED mission during a preparatory meeting held in Minsk, Belarus, from 25 to 27 July 2016.

The Belarusian SEED mission key objective was to review the relevant NPP design parameters against site-specific hazards to determine whether all necessary safety aspects were adequately considered, as outlined in IAEA Safety Standards.

The scope of the review covered aspects related to site-specific hazard characteristics and design parameters, as outlined in Chapter 2 and Chapter 3 of the Preliminary Safety Analysis Report. Specifically, it comprised the following safety elements:

- screening of site hazards;
- site characterization and design parameters;
- site hazards and conditions monitoring; and
- specific challenges related to external events in light of lessons from the Fukushima Daiichi accident.

The SEED review mission was conducted by a team of four IAEA staff members and two international experts from 16 to 20 January 2017. The counterpart, the Belarusian Ministry of Energy, was represented by the Vice Minister, directors, managers and technical staff from the Belarusian Nuclear Power Plant, and other involved institutions participated in the review.

The Review Team assessed information provided by the Belarusian counterpart and concluded, based on a comparison between site characteristics and design parameters, that appropriate steps were followed to adequately addresses all necessary aspects of site safety and site-specific design parameters for the Belarusian NPP for relevant external hazards. Furthermore, the Review Team concluded that appropriate measures have been taken to address challenges related to external events in light of lessons from the Fukushima Daiichi accident and that consideration should be given to future developments of relevant safety improvements.

1. INTRODUCTION

1.1. BACKGROUND

The IAEA's statute tasks the Agency with developing Safety Standards and supporting Member States in the application of those standards. Member States can request safety review services to determine how well they are applying the Safety Standards. In the areas of site selection, site evaluation and design of facilities against external events, the IAEA offers the Site and External Events Design (SEED) review services.

SEED Review Services offer several optional modules, such as reviews focused on the Member State's regulation, on the selection of the site, on the site environment or on the design safety against external hazards. Member States choose modules depending on their needs. The Review Team leader, in consultation with the host, sets the schedule, objectives and the scope of SEED Review Services during a preparatory meeting with the Counterpart. This enables the IAEA Secretariat to prepare for the main review mission and to select international experts depending on the subject and expertise to be covered.

Belarus began site selection activities in the early 1980s. Initially, 74 locations were identified, with the number reduced to three after considering safety risks and economics. At the end of the site selection process, the site located in Ostrovets was selected as the most suitable site for the Belarusian Nuclear Power Plant (NPP). The Belarusian NPP received a construction license in September 2013 for the first unit and in February 2014 for the second unit. Construction was underway for both units at the time of review service.

In 2008, the IAEA conducted two Site Safety Review missions at Belarusian authorities' request. The Agency's first involvement in site-related activities in Belarus started with these missions aimed to evaluate and, if possible, resolve outstanding safety related issues of geotechnical aspects concerning three potential sites.

In September 2014, the Belarusian Ministry of Foreign Affairs requested the IAEA to conduct a SEED mission. After a series of consultations, three IAEA staff members and one international expert conducted a preparatory meeting in July 2016 to establish the objectives, scope and Terms of Reference for the SEED mission.

This report summarizes findings and conclusions from the SEED review service for the Belarusian NPP conducted in January 2017.

1.2. OBJECTIVES

The Belarusian SEED mission key objective was to review the relevant NPP design parameters against site-specific hazards to determine whether appropriate steps were followed to adequately address all necessary safety aspects, as outlined in IAEA Safety Standards.

The Terms of Reference documents the SEED mission's specific objectives as follows:

- determine whether the screening process adequately evaluates hazards selection based on clear defined criteria and uses appropriate data to obtain reasonable conclusions;
- determine whether the selected site contains or adequately addresses all necessary aspects of site safety for the nuclear installation;

- determine whether the site-specific design parameters for selected hazards have been derived appropriately based on the results of hazard analyses;
- advise on the implementation of site monitoring; and
- evaluate the resolution of specific concerns revealed by the Fukushima Daiichi accident.

1.3. SCOPE

The scope of the review covered aspects related to site specific hazard characteristics and design parameters, as outlined in Chapter 2 and Chapter 3 of the Preliminary Safety Analysis Report, [1]. Specifically, the mission scope comprised the following safety elements:

- Screening of the site hazards
 - Review the process of selecting screening hazards to consider
 - Basis for screening and screening results
- Site characterization results includes:
 - Human-induced hazards
 - ✓ Aircraft crash
 - ✓ Offsite Explosion
 - ✓ External fire
 - ✓ Accidental discharge of explosives or toxic clouds
 - ✓ Electromagnetic interference
 - ✓ Damage of water retaining structures such as dams
 - ✓ Accidental discharge of corrosive/chemical aggressive liquid into surface and ground water
 - Natural external hazards
 - ✓ Flood
 - ✓ Tornado
 - ✓ Strong winds (hurricane)
 - ✓ Seismic hazard
 - ✓ Geotechnical
 - ✓ Meteorological (precipitation, temperature and wind)
- Site related design parameters
- Site Monitoring
- Specific challenges related lessons learned from the Fukushima Daiichi Accident, including hazard assessment methods, use of uncertainties, adequacy of the design basis against external hazards, margins, combination of hazards, PSR, cliff-edge effect of hazards impact.

2. CONDUCT OF THE MISSION

The review was prepared with the development of Terms of Reference, including objectives and scope. Preparations also included identifying documents needed for the review. The Review Team's preliminary activities comprised reviewing documents provided by the Counterpart, and requesting clarification where needed. In advance to the mission, the Review Team also developed preliminary comments and recommendations aimed to support the Counterpart in its work to align with IAEA Safety Standards. The main review was conducted in plenary sessions and parallel working groups with results discussed and agreed by the IAEA Review Team as a whole. Final review findings and conclusions were discussed and delivered to the Counterpart at the exit meeting.

2.1. PREPARATORY WORK

The Terms of Reference including the objectives and scope of the SEED mission were discussed and agreed during the preparatory meeting held in Minsk, Belarus, from 25 to 27 July 2016. Documentation containing the required information for the review, including the relevant chapters of the PSAR, was made available to IAEA Review Team prior to the SEED mission. To facilitate the review process, the IAEA Review Team, as part of preparatory work, developed a set of review tables including the preliminary findings and relevant site characteristics and associated design parameters.

2.2. REFFERENCE FOR REVIEW

The main references for review include: (i) Chapter 2 and Chapter 3 of the Belarusian NPP PSAR [1], and (ii) relevant IAEA Safety Standards summarized below:

Code	Title	Edition
SF-1	Fundamental Safety Principles	2006
NS-R-3 (Rev.1)	Site Evaluation for Nuclear Installations	2016
SSG-35	Site Survey and Site Selection for Nuclear Installations	2015
SSG-9	Seismic Hazards in Site Evaluation for Nuclear Installations	2010
SSG-18	Meteorological and Hydrological Hazards in Site Evaluation for Nuclear Installations	2011
NS-G-3.6	Geotechnical Aspects of Site Evaluation and Foundations for Nuclear Power Plants	2004
NS-G-3.1	External Human Induced Events in Site Evaluation for Nuclear Power Plants IAEA	2002
NS-G-3.2	Dispersion of Radioactive Material in Air and Water and Consideration of Population Distribution in Site Evaluation for Nuclear Power Plants	2002
SSG-21	Volcanic Hazards in Site Evaluation for Nuclear Installations	2012

2.3. SEED MISSION

The SEED mission took place from 16 to 20 January 2017 at the Ministry of Energy in Minsk, Belarus. Participants included the Minister and Vice Minister of the Ministry of Energy, directors, managers and technical staff from Belarusian Nuclear Power Plant (operator) supported by Atomstroyexport (contractor), Atomproekt (general designer) and other national institutions. A list of participants is available in Appendix I and the mission programme in Appendix II.

The identified issues were presented in detail following a standard process in line with SEED Guidelines. All safety issues were presented as following:

- Issue identification
- Issue clarification
- Counterpart views and measures (self-assessment by the Counterpart)
- Assessment by the Review Team (comments/recommendations)

The issue clarification part of the presentation explained the safety relevance by referencing the applicable IAEA safety standards' paragraphs, and highlighted which safety requirements the Counterpart appears not to have met. After safety issues are identified the Review Team provides recommendations for actions to resolve any such issues and discuss these with the Counterpart. The Review Team also made suggestions for less safety relevant issues to improvement of practices and documentation in line with IAEA Safety Standards. Examples of good practices were also highlighted.

The counterpart provided excellent support for conducting this mission and responded to all IAEA requests for clarifications in a comprehensive and timely manner.

3. MAIN FINDINGS

3.1. SCREENING PROCESS

The review process is summarized in Table 1, Appendix III.

The review led to the general conclusion that the Counterpart performed a systematic and comprehensive screening of external hazards using sound and well-documented criteria. The Review Team has recognized this screening process as a good international practice.

In addition, the Review Team reached the following specific conclusions:

- the screening criteria were adequate for the selection of hazards and these were considered in a detailed assessment; and
- the screening processes for electro-magnetic interference and lightning need to be better documented in Chapter 2 of the PSAR.

3.2. SITE CHARACTERIZATION AND SITE DESIGN PARAMETERS

The review process is summarized in Table 2, Appendix III.

The Review Team assessed information provided by the Belarusian counterpart and affirmed that appropriate steps were followed to adequately address all necessary aspects of site safety and site-specific design parameters for the Belarusian NPP for relevant external hazards. In addition, the Review Team concluded that:

- site specific parameters are enveloped by the NPP design parameters;
 - meteorological parameters are enveloped by the design parameters with sufficient margin to accommodate climate change effects, and
 - the seismic design parameters are enveloping the site specific conditions, and
 - the site-specific seismic ground motion response spectra derived from site response analysis, in the low frequency range, show potentially inconsistency with the soil profile dynamic characteristics;
- protection against aircraft crashes is provided by design and by administrative measures to control and restrict the aircraft traffic (i.e., by a no-fly-zone) in the region near the site.

3.3. SITE MONITORING

The review process is summarized in Table 3, Appendix III.

The review led to the general conclusion that hazard monitoring programmes are adequate and properly documented in the PSAR.

3.4. LESSONS LEARNED FROM THE FUKUSHIMA DAIICHI ACCIDENT

The team and the Counterpart shared views and experiences to improve protection of people and environment against consequences of impact of external events on nuclear installations. The discussion focused on IAEA Safety Requirements¹²³ revised in 2016 to enhance protection against external events and accidents and mitigate consequences should an accident occur. These measures include assessment of external hazards and design basis, safety margins, and beyond design basis provisions for accident prevention and mitigation in relation to external hazards.

The Counterpart presented design safety features that had been introduced because of lessons from the Fukushima Daiichi accident, and an outline of its ongoing Stress Test programme. The Counterpart also confirmed its commitment to finalize Level 1 and 2 PSA before starting commercial operation.

The Review Team suggested that consideration should be given to future developments of safety improvements related to challenges highlighted in the IAEA Director General's Report on the Fukushima Daiichi Accident, and its five technical volumes.

The Review Team noted also that the commitment to finalize Level 1 and Level 2 PSA for both internal and external events is in line with good international practice.

⁻

¹ Site Evaluation for Nuclear Installations (NS-R-3 Rev.1, IAEA, 2016) http://www-pub.iaea.org/books/IAEABooks/10882/Site-Evaluation-for-Nuclear-Installations

² Safety of Nuclear Power Plants: Design (SSR-2/1 Rev.1, IAEA, 2016)

http://www-pub.iaea.org/books/IAEABooks/10885/Safety-of-Nuclear-Power-Plants-Design

³ Safety Assessment for Facilities and Activities (GSR Part 4 Rev.1, IAEA, 2016) http://www-pub.iaea.org/books/IAEABooks/10884/Safety-Assessment-for-Facilities-and-Activities

4. CONCLUSIONS

Based on the review of the PSAR Chapters 2 and 3 related to site specific hazard characteristics and design parameters and discussions held with the Counterpart, the Review Team concluded that appropriate steps were followed to adequately address all necessary aspects of site safety and site-specific design parameters for the Belarusian NPP for relevant external hazards. Furthermore, the Review Team concluded that:

- systematic and comprehensive screening of external hazards was performed using sound and well-documented criteria;
- site specific parameters are enveloped by the NPP design parameters
- hazard monitoring programmes are adequate and properly documented in the PSAR; and
- appropriate measures have been taken to address challenges related to external events in light of lessons from the Fukushima Daiichi accident.

The Review Team offered also the following suggestions:

- the section documenting electro-magnetic interference and lightning should be improved in the Chapter 2 of the final SAR;
- the site-specific seismic ground motion response spectrum should be properly documented in the final SAR, taking into account soil conditions and international practice (IAEA Safety Standard Series SSG-9); and
- consideration should be given to future developments of safety improvements related to challenges highlighted in the IAEA Fukushima Daiichi Accident Report following completion of the stress test and PSA Level 1 and 2.

The Review Team noted that the Counterpart's practices in the following areas are in line with good international practice:

- commitment to conduct Level 1 and Level 2 PSA for both internal and external events before starting the commercial operation of the NPP; and
- comprehensive screening of site-specific external hazards.

5. REFERENCES

- 1. Preliminary safety analysis report of Belarusian NPP
- 2. SF-1 Fundamental Safety Principles, IAEA 2006
- 3. NS-R-3 (Rev.1) Site Evaluation for Nuclear Installations, IAEA 2016
- 4. SSG-35 Site Survey and Site Selection for Nuclear Installations, IAEA 2015
- 5. SSG-9 Seismic Hazards in Site Evaluation for Nuclear Installations, IAEA 2010
- 6. SSG-18 Meteorological and Hydrological Hazards in Site Evaluation for Nuclear Installations, IAEA 2011
- 7. NS-G-3.1 External Human Induced Events in Site Evaluation for Nuclear Power Plants, IAEA 2002
- 8. NS-G-3.2 Dispersion of Radioactive Material in Air and Water and Consideration of Population Distribution in Site Evaluation for Nuclear Power Plants, IAEA 2002
- NS-G-3.6 Geotechnical Aspects of Site Evaluation and Foundations for Nuclear Power Plants, IAEA 2005
- 10. SSG-21 Volcanic Hazards in Site Evaluation for Nuclear Installations, IAEA 2012

APPENDIX 1 – LIST OF PARTICIPANTS

A.1 IAEA REVIEW TEAM:

IAEA Staff Member	
1. Greg Rzentkowski	Director NSNI,
	IAEA/NSNI
2. Ovidiu Coman	Senior Nuclear Safety Officer,
	IAEA/NSNI/EESS
3. Ayhan Altinyollar	Nuclear Safety Officer
	IAEA/NSNI/EESS
4. Jeffrey Donovan	Press and Public Information Officer
	OPIC
IAEA EXTERNAL Experts	
1. Pierre Sollogoub	External Expert,
	France
2. Tamas Katona	External Expert,
	Hungary

A.2 COUNTERPART:

Belarusian Nuclear Power Plant, Republican Unitary Enterprise – the customer for NPP construction and the operator				
1. Vitali Malisheuski	Deputy chief engineer for engineering			
	support, head of industrial-technical			
	department			
2. Nikolai Grusha	Head of team for cooperation with state			
	agencies and organizations			
3. Mikhail Pigoulevski	Lead specialist for cooperation with			
	state agencies and organizations			
4. Alexandr Parfyonov	Deputy chief engineer for safety and			
	reliability			
5. Rinat Valeev	Head of reliability and safety analysis			
	department			
6. Sergey Zubov	Deputy head of radiation safety			
	department			
7. Andrey Vorobiov	Head of individual dosimetry control			
	laboratory			
Atomstroyexport Engineering Company, JSC ((Contractor)			
1. Sergey Prikhodko	Director for designing Belarusian NPP			
2. Evgeniy Tolstov	Lead specialist			
3. Evgeniy Krasnov	1st category engineer of engineer			
	survey department			

4. Sergey Popov Deputy head of engineer survey department **Atomproekt Company (General designer)** 1. Dmitriy Shkitelev Director for designing Belarusian NPP 2. Pavel Bezrukov Deputy director for designing Belarusian NPP Deputy chief engineer of the project 3. Yuriy Ermakovich 4. Georgiy Kostrov Lead specialist of construction department **Ministry of Natural Resources and Environmental Protection** 1. Nadezhda Zdanevich Head of urban projects evaluation department Republican Center for Hydrometeorology, Radiation Control and Environmental Monitoring 1. Maria Germenchuk Head of the centre 2. Olga Zhukova Head, department of R&Ds for radiation and environmental monitoring 3. Viktar Melnik Head, service of scientific and methodological support to hydrometeorological surveys Head, service of hydrology and 4. Lyudmila Zhuravovich agrometeorology **Centre of Healthy** Head of radiation safety laboratory 1. Alena Nikolaenko Belnipienergoprom, Republican Unitary Enterprise 1. Andrei Katanayev Lead specialist of industrial-technical department **Centre of Geophysical Monitoring** 1. Arkady Aronov Director 2. Rustyam Seroglazov Deputy director Geoservice, Production Republican Unitary Enterprise 1. Oleg Lazhevich Director 2. Yury Zaika Chief geologist Sosny Joint Institute for Power and Nuclear Research 1. Alexander Trifonov Deputy general director **Institute for Nature Management** 1. Valery Khomich Deputy director 2. Natalia Tomina Research specialist **Research and Production Centre for Geology** 1. Alexandr Belyashov Lead geophysicist with Belarusian **Integrated Geological Survey** Expedition Department for Nuclear and Radiation Safety (Gosatomnadzor), Belarusian Ministry of **Emergency Situations** 1. Sergey Tretyakevich Deputy head, department for assessing safety of nuclear facilities' systems and facilities

APPENDIX 2 - MISSION PROGRAMME

Time	Day 1	Day 2	Day 3	Day 4	Day 5
	Opening	Preliminary comments on	Preliminary comments on	Preliminary comments on	Presentation of the
	Introduction of Participants	Site Specific Natural	Site Specific Human Induced	Site Monitoring	Summary Report
9:30-10:30	Approval of the Agenda	External Hazards	External Hazards	Discussions and	
9.30-10.30		Characterization Results	Characterization Results	clarifications	Discussions on the main
	Preliminary comments on			Conclusions on Site	conclusions of SEED Safety
	External Hazard Screening			Monitoring	Review Mission
10:30-11:00			Coffee Break		
	Discussions and clarifications	Discussions related to:	Discussion Related to:	Summary of The Review	Closing Session
	on the process arriving to	Flood	Aircraft crash	Findings	Meeting with the Ministry of
11:00-12:30	screened out and screened	Tornado	Offsite Explosion		Energy
11.00-12.50	in hazards	Strong winds	External fire		Media Event
		Other Meteorological			Adjourn
		Hazards			
12:30-14:00			Lunch Break		
	Discussions and clarifications	Discussions related to:	Discussion Related to other	IAEA Team working on the	
	regarding Basis for	Seismic hazard	human induced hazards e.g.	Summary Report	
	screening Hazard	Geotechnical Characteristics	explosive or toxic clouds, Electromagnetic interference,		
		and Hazards	etc.		
14:00-15:30			Ctc.		
			Preliminary Comments And		
			Discussions on Specific		
			Concerns Related to Fukushima		
		-	Accident External Events	-	
15:30-16:00	O Coffee Break				
	Conclusions on External	Conclusions on Natural	Conclusions on Human Induced	IAEA Team working on the	
16:00-17:00	Hazards Screening	External Hazards	External Hazards	Summary Report	
		Characterization Results	Characterization Results and Fukushima Concerns		
			i ukusiiiiila Concerns		

APPENDIX 3 - REVIEW TABLES

TABLE 1 SCRRENING OF HAZARDS

No.	Hazards Screening	Screening Criteria	Screening	Remarks
INO.	nazarus screening	Screening Criteria	_	Remarks
1	Aircraft crash	Probability Screening Value = T=10E-6 (per one year) Ref P-SAR Chapter 2 Sub-chapter 2.2.1.1	Results Screened in for detailed hazard assessment.	Detailed Aircraft Hazard Assessment was carried out. Protection measures for big aircrafts are: admin measure — establishing No Fly Zone and diversion of the air corridors. Ref. P-SAR Chapter 2.2.1.1.8 Design protection measures implemented for small aircrafts (military aircrafts are not considered). Ref. P-SAR Chapter 3.5.1.1.2 The design provides safety conditions in case of a crash of a light aircraft of 5.7 tons at 100 m/s. Considered and estimated a possibility of a crash into the NPP site and a direct crash into the NPP unit of aircraft of all types including military aircraft. Administrative measures include no-fly zone and diverting flight corridors. Ref.: P-SAR 2.2.1.1. Conclusion: no safety issues
2	Offsite Explosions	DP < 30 KPa HΠ-064-05 Ref. <u>P-SAR Chapter</u> 2.2.1.3	Screened out	Conservatively design protection for 30KPa pressure wave was done (part of the standard design). Ref. P-SAR 2.2.1.3, 2.2.3 Conclusion: no safety issues
3	External fire	SDV = 2km HΠ-064-05 Ref. <u>P-SAR Chapter</u> 2.2.1.2, 2.2.3	Screened out	No protective measures needed. Ref. P-SAR Chapter 2.2.1.2, 2.2.3 Conclusion: no safety issues
4	Accidental discharge of explosive or toxic clouds	SDV= 5 and 10x km HΠ-064-05 Ref. P-SAR Chapter2.2.1.6, 2.2.3	Screened out	No protective measures needed. Ref. P-SAR Chapter 2.2.1.6, 2.2.3 Conclusion: no safety issues
5	Electromagnetic	No sources in site	Screened out	Suggestion = add this in Chap. 2

No.	Hazards Screening	Screening Criteria	Screening Results	Remarks
	interference	vicinity. P-SAR Chapter 8.3.2.7		of FSAR. Ref. P-SAR Chapter 8.3.2.7 No protective measures needed. Conclusion: no safety issues
6	Corrosive/chemical aggressive liquid accidental discharge into surface and ground water	No sources in site vicinity Ref. P-SAR2.2.1.5, 2.2.3	Screened out	No protective measures needed. <u>Conclusion: no safety issues</u>
7	External Flood	Dry site River mean elevation=117.4 m Design Base Flood=127.8 m Site Elevation=179.3 m P-SAR Chapter 2.3.2 page336	Screened out	Dry site demonstrated. Ref. P-SAR Chapter 2.3.2 Conclusion: no safety issues
8	Seismic Hazards: Ground Motion	Cannot be screened out PGA=0.1g	Screened in SL2 PGA=0.1g T=10,000y	Detailed SHA done. Design provisions PGA=0.12g (BAL 7) Ref. P-SAR 1.7.5.3, 2.4.2 Main reactor equipment: 0.12g Safety system equipment and piping: 0.12g Engineering structures, buildings and facilities 0.12g Conclusion: no safety issues
9	Seismic Hazards: Fault Displacement	No capable faults within 5 Km radius. Ref. PSAR Ch. 2.4.2	Screened out	Based on Site Vicinity Detailed Investigations P-SAR Ch. 2.4.2 Conclusion: no safety issues
10	Geotechnical: Liquefaction	Low seismicity and ground water level HΠ-064-05	Screened out Low seismicity and deeply occurring water level HП-064-05	Based on geotechnical and seismic assessment No site/soil improvement measures are necessary P-SAR Ch. 2.4.1.7.3 Conclusion: no safety issues
11	Geotechnical: Slope Stability	No natural slopes / flat site P-SAR Ch. 2.4.1	Screened out	Conclusion: no safety issues
12	Geotechnical: Cavities/Karstic Formations	No karst/Cavities P-SAR Ch. 2.4.1	Screened out	Based on Site Vicinity Detailed Investigations P-SAR Chapter 2.4.1 Conclusion: no safety issues
13	Meteorological: Extreme precipitation	T=100 y	Screened in	Detailed investigations carried out. Ref. PSAR Ch. 2.3.1.1 Conclusion: no safety issues

No.	Hazards Screening	Screening Criteria	Screening Results	Remarks
14	Meteorological:	T=100 y	Screened in	Detailed investigations carried
	Extreme temperatures			out
				Ref. <u>PSAR Ch. 2.3.1.1</u>
4.5	NA -t l ' l	T 400	C	Conclusion: no safety issues
15	Meteorological:	T=100 y	Screened in	Detailed investigations carried
	Extreme winds	НП-064-05		out
				Design protection provided.
				Ref. PSAR Ch. 2.3.1.1
4.6	NA -11 '1	T 40 000	C	Conclusion: no safety issues
16	Meteorological:	T=10,000 y	Screened in	Detailed hazard assessment
	Tornadoes	НП-064-05		done.
				Design protection provided
				Ref PSAR 2.3.1.1
17	Matagralagianl	T 10 000	Screened in	Conclusion: no safety issues
17	Meteorological, rear straight winds	T=10,000 у НП-064-05	Screened in	Detailed hazard assessment done.
	Hurricanes	ПП-004-03		Design protection provided
	Tiurricaries			Ref PSAR Ch. 2.3.1.1
				Conclusion: no safety issues
18	Meteorological:	НП-064-05	Screened in	Hazard Assessment done
10	Lightning	Ref. P-SAR Chapter	Screencam	Design protection provided
	218111111111111111111111111111111111111	8.3.2.7		Ref. P-SAR Chapter 8.3.2.7
		0.0.2.7		Conclusion: no safety issues
19	Dust Storms	НП-064-05	Screened out	No design protection needed.
	2 450 60011110	55 . 55	25. 55.155 541	Conclusion: no safety issues
20		A1 1		
20	Volcanic Hazards	No active volcanos	Screened out	No design protection needed.
		Ref.		Conclusion: no safety issues
		НП-064-05		

IAEA- TCR- 11619 Original: English

TABLE 2 SITE CHARACTERIZATION AND DESIGN PARAMETERS

Nº	Site Parameter	Site Characteristics	Design Parameters	Remarks
	Hydrological parameters			
1	Maximum Flood Elevation	+127.8 m(Baltic Sea) T=10,000 Ref. <u>PSAR Ch. 2.3.2</u>	+179.3m(Baltic Sea) Ref. <u>PSAR Ch. 2.2.1.4</u>	Design site level mark is 51.5 m higher than the maximum estimated water level. Conclusion: no safety issues
2	Maximum Elevation of Groundwater	159.69-167.88m Ref. <u>PSAR Ch. 2.4.1.7.2</u>	+179.3m (Baltic Sea) Ref. <u>PSAR Ch. 2.2.1.4</u>	Conclusion: no safety issues
	Meteorological parameters			
	Air Temperature			
3	Maximum dry bulb temperature and coincident wet bulb temperature 1% annual frequency of exceedance 2%annual frequency of exceedance 100 year return period	0.01% = 37.4 °C Ref. <u>PSAR Ch. 2.3.1.1</u>	Design 52 °C Ref. <u>PSAR Ch. 3.10.6</u>	Conclusion: no safety issues
4	Maximum non-coincident wet bulb temperatures 1% annual frequency of exceedance 2% annual frequency of exceedance 100 year return period	0.01% = 37.4 °C Ref. <u>PSAR Ch. 2.3.1.1</u>	Design 52 °C Ref. PSAR <u>Ch. 3.10.6</u>	Conclusion: no safety issues
5	Minimum dry bulb temperature 98% annual frequency of exceedance 99% annual frequency of exceedance 100 year return period	0.01% = -50 °C Ref. <u>PSAR Ch. 2.3.1.1</u>	Design -61 °C Ref. <u>PSAR Ch. 2.3.1.1</u>	Conclusion: no safety issues
	Ultimate heat sink			
6	Meteorological conditions resulting in the minimum water cooling during any 1 day (5 days)	Non-exceedance level: -25,5 OC – 2% -22.2 OC – 8%	Non-exceedance level: 10% = -22,0 0C	Conclusion: no safety issues

	Historic worst case	Relative humidity 80%	Relative humidity 81%	
		Construction	1.4 m/s	
		climatology	Ref.: Calculation	
		СНБ- 2.04.02-2000	'Specification of	
		3.12	cooling capability of	
			spray cooling ponds.	
			PSAR Ch. 12.3.2.1.5.4	
7	Meteorological conditions resulting	Non-exceedance level:	T = 23,90C	Conclusion: no safety issues
	in the maximum evaporation and	10%	Relative humidity 69%	
	drift loss during any consecutive	T 23,9	Wind velocity at 10 m	
	30 days. Historical worst case	Relative humidity 69%	height: 1.4 m/s	
		Wind velocity at 10 m	Ref.: Calculation	
		height: 1.4 m/s	'Specification of	
		Ref.: Calculation	cooling capability of	
		'Specification of	spray cooling ponds'.	
		cooling capability of	PSAR Ch. 12.3.2.1.5.4	
		spray cooling ponds'.		
		PSAR Ch. 12.3.2.1.5.4		
	Wind speed			
8	3 second gust wind speed	Ultimate gust wind	61 m/s	Conclusion: no safety issues
	100 year return period	speed recorded: 36	Ref. PSAR Ch. 3.10.6	
		m/s		
		54 m/s for T=10,000y		
		Ref. PSAR Ch. 2.3.1.1		
	Precipitation (liquid equivalent)		1	
9	Local intense precipitation	Maximum	160 mm/day for	Conclusion: no safety issues
	Probable maximum precipitation	precipitation	T=10,000y	
	100 year return period	recorded: 101	1160 mm/year for	
		mm/day	T=10,000y	
		1075 mm/year	Ref. <u>Belarusian NPP</u>	
		Ref. <u>PSAR Ch. 2.3.1.1</u>	Design, vol. 1,	
			<u>5.3.1.1.4.</u>	

	Snowpack			
10	Ground snowpack weight 100 year return period	Maximum storage of water in snowpack: 195 mm	4.3 kPa 270 mm PSAR Ch. 3.10.1.1	Conclusion: no safety issues
		3 kPa for T=10,000y Ref. PSAR Ch. 2.3.1.1		
	Freezing precipitation (Ice storms)			
11	Ice thickness and concurrent wind Speed 100 year return period	2.1 mm for a wire cable of 10 mm thick at 10 m height Ref. PSAR Ch. 2.3.1.1.48	5 mm for a wire cable of 10 mm thick at 10 m height CΠ 20.13330.2011 Ref. PSAR Ch. 2.3.1.1.48	Conclusion: no safety issues
	Lightning			
12	Lightning strike frequency Lightning strikes per year	0.5/km ² per year According to Gidromet (Belarus) statistics	3/km2per year According to CO 153- 34.21.122-2003	Considered in the design Conclusion: no safety issues
	Tornado			
13	Maximum horizontal Wind speed Translational speed Rotational Speed Radius of Maximum Rotational Speed 10 000 year return period	17 m/s 70 m/s 80 m 2,94*10 ⁻⁶ per year Ref. <u>PSAR Ch. 2.3.1.1</u>	24 m/s 95 m/s 285 m Ref. <u>PSAR Ch.</u> 3.10.1.1.3	Conclusion: no safety issues
14	Pressure drop 10 000 year return period	6 kPa Ref <u>. PSAR Ch. 2.3.1.1</u>	11.1kPa Ref. <u>PSAR Ch.</u> 3.10.1.1.3	Conclusion: no safety issues
15	Massive tornado missile 10 000 year return period	No missiles Fujita scale tornado intensity rating for Belarusian NPP = 2,5 According to P5-022-	1800 kg Ref. <u>PSAR Ch.</u> 3.10.1.1.3	Conclusion: no safety issues

16	Rigid tornado missile 10 000 year return period	01 for values less than F3 tornado missiles are not taken into consideration. Ref. PSAR Ch. 2.3.1.1 No missiles Fujita scale tornado intensity rating for Belarusian NPP = 2,5 According to P5-022-	125 kg 200 mm Ref. PSAR Ch. 3.10.1.1.3	Conclusion: no safety issues
		O1 for values less than F3 tornado missiles are not taken into consideration. Ref. PSAR Ch. 2.3.1.1		
17	Small rigid tornado missile 10 000 year return period	No missiles Fujita scale tornado intensity rating for Belarusian NPP = 2,5 According to PE-022- 01 for values less than F3 tornado missiles are not taken into consideration. Ref. P-SAR Ch. 2.3.1.1	2.5 cm Ref. <u>PSAR Ch.</u> 3.10.1.1.3	Conclusion: no safety issues
	Hail			
18	Historical maximum hail stone size	8-10 cm 11.07.1953 Ref. <u>PSAR Ch. 2.3.1.1</u>	Ref. <u>PSAR Ch.</u> 3.10.1.1.3	Load rate is lower than the design value for tornado missiles. No additional calculation required. <u>Conclusion: no safety issues</u>
19	Concurrent terminal velocity	No data	Ref. <u>PSAR</u>	Load rate is lower than the design value for tornado missiles. No

			Ch.3.10.1.1.3	additional calculation required.		
				Conclusion: no safety issues		
	Freezing precipitation and frost related phenomena			,		
20	Nominal ice thickness;	2.1 mm for cable	5 mm for cable	Conclusion: no safety issues		
		diameter of 10 mm at	diameter of 10 mm at			
		10 m	10 m			
		Ref. <u>PSAR Ch.</u>	СП 20.13330.2011			
		2.3.1.1.48	Ref <u>. PSAR Ch.</u>			
			2.3.1.1.48			
			Page 225			
	Change of meteorological hazard with time					
21	Changes in air and water temperatures	Clarified		Extreme meteorological parameters		
	Changes in frequency and intensity of phenomenon			are well bounded by the design		
				parameters resulting in margins		
				that can accommodate climate		
				changes effects.		
				Conclusion: no safety issues		
	Seismic parameters					
22	Ground Motion Response Spectra for SL1	0.055g	0.06g	Broadband design ground response		
		Ref. <u>PSAR Ch.2.4.2</u>	Ref. <u>PSAR Ch. 1.7.5.3</u>	spectrum accepted as design basis		
23	Ground Motion Response Spectra for SL2	PGA=0.10g	0.12g	Suggestion to derive site specific		
		GRS shape	GRS	GRS according to par. 9.3 SSG-9 and		
		Ref. <u>PSAR Ch. 2.4.2</u>	Ref. <u>PSAR Ch. 3.10.1.3</u>	include it in FSAR.		
				Conclusion: No safety issue since		
				design GRS envelop site conditions.		
	Geotechnical parameters					
	Minimum Static Bearing Capacity	Vertical force at	Foundation ultimate	Conclusion: no safety issues		
24	0 1 7	I	1	1		
24		foundation base.	bearing capacity in			
24		foundation base.	terms of vertical			
24		foundation base. 1) Reactor building				

		1	1	I
		2) Steam chamber		
		Na = 123480 kN	Nu = 1189192 kN	
		3) Other nuclear island		
		facilities		
		Na = 120000-588000	Nu = 933000-	
		kN	39000000 kN	
		4) Turbine building		
		Na = 1229406 kN	Nu = 36319706 kN	
		Foundation capacity	PSAR Ch. 3.12	
		rating was carried out		
		according to MP		
		1.5.2.05.999.026-2011		
		PSAR Ch. 3.12		
25	Minimum Shear Wave Velocity	300-500 m/s under	250 m/s	Conclusion: no safety issues
		foundation level	Ref. <u>PSAR Ch.3.11.1.4</u>	
		Foundation capacity		
		rating was carried out		
		according to MP		
		1.5.2.05.999.026-2011		
		'Design standards for		
		foundations of NPP		
		facilities'		
		Ref. <u>PSAR Ch. 2.4.2</u>		
26	Maximum Settlement	1) Reactor building	300 mm	Conclusion: no safety issues.
		Settlement 205.3 mm	0.001	
		Tilt 0.00037 Rad		
		2) Safety class 1	180 mm	
		buildings and facilities	0.001	
		(cast reinforced		
		concrete)		
		Settlement 27-153		

		mm Tilt <0.001 3) Safety class 2 and 3 buildings and facilities (frame constructions) Settlement 22-70 mm Tilt <0.005	120 mm 0.005			
		4) Cast reinforced concrete buildings Settlement 34-100 mm	180 mm 0.005 Ref. PSAR Ch. 3.10.5			
		Ref. PSAR Ch. 3.10.5				
27	Expansion, uplift	Under-dilative soils Ref. <u>PSAR Ch. 2.4.1</u>	None at the base of reactor compartments	During construction, under-dilative soils are excavated This phenomenon may occur at an elevation higher than the foundation level. Conclusion: no safety issues.		
	Human Induced external event parameters					
28	Aircraft Hazards on Plant SSCs	Probability Screening Value = T=10E-6 Ref. <u>PSAR Ch. 2.2.1.1</u>	Screened in	Detailed Aircraft Hazard Assessment was carried out. Design protection measures implemented for small aircrafts. (military aircrafts are not considered). Ref. P-SAR Chapter 3.5.1.1.2 The design provides safety conditions in case of a crash of a		

				light aircraft of 5.7 tons at 100 m/s. Protection measures for larger aircrafts are: admin measure — establishing No Fly Zone and divert of the air corridors. Ref. PSAR Ch. 2.2.1.1.8 The possibility of aircraft crash of Belarusian military aircraft was screened out. The possibility of aircraft crash of Lithuanian military aircraft is 4.2x10-12 per year (based on the corresponding data provided by the Lithuanian authorities. Conclusion: no safety issues.
29	Human Induced External Hazards on Plant SSCs (e.g. explosions, fires, release of toxic chemicals and flammable clouds, pressure effects)	N/A	Screened out	Conclusion: no safety issues.
30	Grid Stability	Ref. <u>PSAR 8.1.2.13</u>	Screened in	Considered Ref. PSAR Ch. 8.1.2.13 Conclusion: no safety issues.

TABLE 3 HAZARDS MONITORING PROGRAMME

	Hazards Monitoring	Remarks	Remarks
1	Seismic monitoring	Monitoring programme provided.	Conclusion: no safety issues.
		Ref. <u>PSAR Ch. 2.6.2.4</u>	
2	Monitoring of geotechnical parameters (Global	Monitoring programme provided.	Conclusion: no safety issues.
	positioning system, Settlement monuments, In situ	Ref. PSAR Ch. 2.6.2.6 and 2.6.2.7	
	settlement plates etc.)		
3	A monitoring programme for groundwater,	Monitoring programme provided.	Conclusion: no safety issues.
		Ref. <u>PSAR Ch. 2.6.2.5</u>	
4	A meteorological monitoring system for basic	Monitoring programme provided.	Conclusion: no safety issues.
	atmospheric variables,	Ref. <u>PSAR Ch. 2.6.2.2</u>	
5	A meteorological warning system for rare	Arrangements for meteorological	Conclusion: no safety issues.
	meteorological phenomena (e.g. hurricanes,	warnings are in place.	
	typhoons, tornadoes),		
7	A water level gauge system (Hydrology).	Monitoring provisions are provided.	Conclusion: no safety issues.
		Ref. PSAR Ch. 2.6.2.1 (surface water)	