IAEA webinar: TRENDS IN THE APPLICATION OF OPTIMIZATION AND GRADED APPROACH IN INDUSTRIAL PROCESSES INVOLVING NORM

Recommendations for Occupational Control of NORM-Related Industries in Argentina

> Analia Canoba 26 February 2025

Some characteristics of industries involving NORM

- Very diverse, already on-going, generally big size
- Relatively low levels of radiation exposure involved
- Subject to authorisation, not for RP
- Experience in risk management but **poor RP culture**
- Often multi-hazards and radiological risk rarely dominant
- Ubiquity, variability of exposures
- NORM introduced in industrial process but not for its radioactive properties
- The process in which NORM is concentrated is mainly incidental

Graded approach

- What are the **risks**? What are the **opportunities**?
- Understanding NORM activities in the country: characterization
- Appropriate strategies so that efforts and resources expended on protection are commensurate with risks
- Involves establishing an adequate protection according to circumstances
- **RP integrated** with **conventional** health & safety standards
- Protective actions may not be warranted or disproportionate
- Applying some or all requirements of a RP programme may be appropriate if the exposures are significant,
- Actions should reflect a justified balance of costs and benefits

National situation (1)

- ARN is not in charge to control activities related with NORM
 - Natural radiation is not included explicitly in Nuclear Law 24804
 - Uranium mining and processing is under scope of ARN
 - Conduct a characterization project in the 2000s to know and inform other authorities
- Several meetings with Labor, Environmental and Health authorities and also industries association to inform/raise awareness

National situation (2)

- Finally, established a memorandum of understanding between Ministry of Labor (2023).
- Try to merge with control mechanisms already existing in other regulations that are not familiar with RP wording, have other concepts (Ex: how to consider a NORM worker, how to harmonize with requisites for other already regulated activities)
- 2 documents prepared together to address control of NORM related industries (Standard and Guide)

In order to implement protection

1- Characterization

2- Justification and optimization principles

3- Regulatory requirements implemented in a graded approach

Characterization

a) Industry description process and analysis.

- Probable accumulation sites
- Workplace analysis (spent time, PPE, working conditions)
- Protective measures for conventional contaminants

b) Workplace monitoring (normal operation and maintenance)

- External radiation fields
- Potential for internal intake (aerosols)
- Radon gas (closed environments)

c) Radionuclides and their concentrations in different materials

d) Surface contaminated items

To know and understand the risks

To be able to prioritize the industries

RP Principles

Justification

Of a protection strategy, after characterisation

Overall benefit: health, economic, societal, ethical aspects. Stakeholder involvement *(Justification principle of RP in a broader sense)*

Optimisation

To select the **most effective** actions for protection RP **integrated** in conventional health & safety standards The best under **prevailing circumstances** Collective protection first and then Individual protection **Dose limitation**

A priori not relevant/ May be applied for regulatory purpose when needed (flexibility)

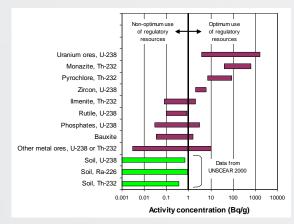
Optimization process: reasonableness

Reasonableness: the art of understanding the prevailing circumstances and the acceptable level of protection

Tendency to minimization of exposures instead of optimisation of RP, in a context of increasing societal and environmental concerns:

- Adaptation of optimized solutions instead of just minimization of the exposure.
- An holistic approach to optimizing hazards as a whole.
- Improving dialogue and understanding of radiation hazard between operators, regulators and the public: Do we have a clear message to deliver?

Radiological protection measures


- According to risks: not imposing unnecessary burdens
- Raise awareness and close dialogue with industry. Information.
- Integration of specific RP actions to complement protection in place.
- Significant radiological hazards may need to use requirements that are typically associated with radiological protection programmes.
- Control of workplace conditions first (ventilation, shielding, engineering controls, signals, working procedures), then individual control (PPE, individual monitoring, health surveillance)
- For workers protection apply dose limits and occupational requirements, only if needed, in a graded approach.
- Education and training

Criteria for graded approach (Excluding radon)

Materials below 1 Bq/g could be considered excluded from regulatory control.

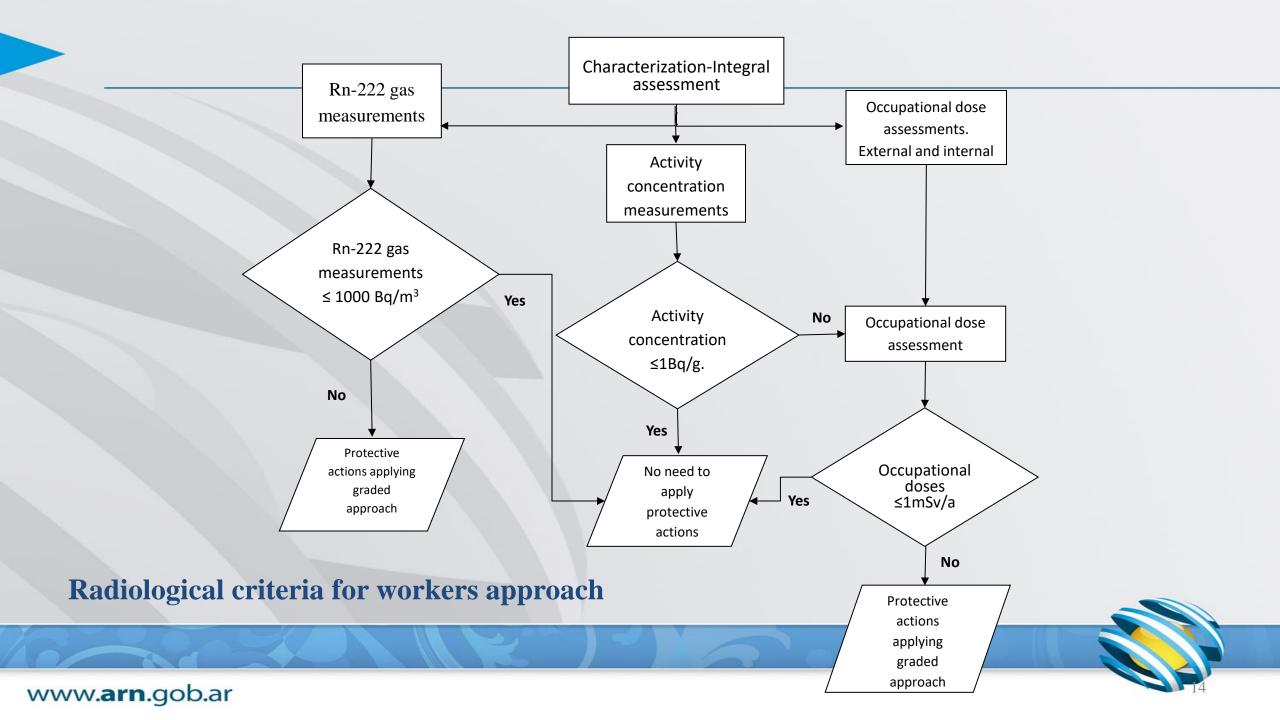
Materials above 1 Bq/g need dose assessment to define if are exempted or regulated Exposure scenarios, real dose assessment,

Materials above 1 Bq/g and above 1 mSv/y, are controlled applying graded approach, if the control produces a net benefit

Radiological criteria for workers approach

Dose assessment (excluding radon and background):

Graded approach:


- ✓ Gamma emitters and aerosols < 1 mSv/y (no regulation necessary verification every 5 years)
- ✓ Gamma emitters and aerosols: > 1 mSv/y and \leq 2 mSv/y (Characterization once a year)
- ✓ Gamma emitters and aerosols: > 2 mSv/y and \leq 6 mSv/y (General RP requirements apply)
- ✓ Gamma emitters and aerosols: > 6 mSv/y (Specific requirements of occupational RP apply)

Radon and graded approach

(1) optimising protection using a derived reference level of 1000 Bq/m³
(2) optimising protection using real parameters of exposure, such as occupancy, to verify reference level of 10 mSv/y
(3) applying relevant requirements for occupational exposure when

exposure remains above 10 mSv/y.

Residue management and sustainability

Diversity of activities generates NORM residues and wastes. Should be managed in a safe and sustainable manner

- Minimizing generation and disposal of waste
- Minimizing the use of land, potential soil degradation
- Minimizing the potential impact on aquifers and the environment,
- Proper use of resources
- Encouraging the reuse and recycling of material (moving linear to circular economy)
- Analyzing possibilities of conditional clearance
- Addressing and balance all risks simultaneously applying a graded approach.

UN Sustainable Development Goals

Graded approach for NORM residues

Generic clearance (1 Bq/g ²³⁸U - ²³²Th - 10 Bq/g ⁴⁰K),

Conditional clearance (< 1mSv/y),

Reuse/recycle (moving linear to circular economy)

Disposal at conventional/hazardous landfill,

Disposal as Radioactive Waste

Residues with activity concentration > 1 Bq/g could be still related to irrelevant risks to ionizing radiation

NORM residue may be or not a NORM waste Not all NORM waste is a radioactive waste!

Implementation of graded approach needs:

- To collect all history of NORM related industries operating within the country
- To have appropriate staffing, enough infrastructure for measurements/radiation protection expertise for characterization and control (also costs involved)
- To involve stakeholders in the development of regulations:
 - explain why and what to regulate
 - understand the impact of regulations, cost/benefits
- To take advice from other regulators, professional associations.

Conclusions

- Assure the best protection within the prevailing circumstances, beyond it is treated as EES or PES
 - ✓ applying an all hazard, graded approach and reasonableness when implementing optimization.
 - in practice, a range of tools can be used, including reference levels, dose constraints and dose limits, based on the characteristics, circumstances and risks of the situation.
- Improve dialogue and understanding of radiation hazard between operators, regulators and the public
- Focus on practicability, pragmatic attitude, avoiding overregulation!

Thank you!

acanoba@arn.gob.ar

