Information (14:00), June 13 2024

To All Missions (Embassies, Consulates and International Organizations in Japan)

Report on the discharge record and the seawater monitoring results at Fukushima Daiichi Nuclear Power Station during March

The Ministry of Foreign Affairs wishes to provide all international Missions in Japan with a report on the discharge record and seawater monitoring results with regard to groundwater pumped from the sub-drain and groundwater drain systems, as well as, bypassing groundwater pumped during the month of March at Fukushima Daiichi Nuclear Power Station (NPS).

1. Summary of decommissioning and contaminated water management

In March the summary of monthly progress on decommissioning and contaminated water management of Fukushima Daiichi NPS was issued shown in Appendix 1. For more information, please see the following URL: https://www.meti.go.jp/english/earthquake/nuclear/decommissioning/pdf/mp202403.p df

2. Sub-drain and Groundwater Drain Systems

In March purified groundwater pumped from the sub-drain and groundwater drain systems was discharged on the dates shown in Appendix 2. Prior to every discharge, an analysis on the quality of the purified groundwater to be discharged was conducted by Tokyo Electric Power Company (TEPCO) and the results were announced.

All the test results during the month of March have confirmed that the radiation levels of sampled water were substantially below the operational targets set by TEPCO (these operational targets are well below the density limit specified by the Reactor Regulation). The results of these analyses were also confirmed by third-party organization (Tohoku Ryokka Kankyohozen Co.).

In addition, TEPCO and Japan Atomic Energy Agency (JAEA), at the request of the Government of Japan, regularly conduct more detailed analyses on the purified groundwater. The results of JAEA's latest analyses confirmed that TEPCO's analyses were accurate and verified that the radiation levels of sampled groundwater was substantially below the operational target (see Appendix 3).

Moreover, TEPCO publishes the results of analyses conducted on seawater

sampled during the discharge operation at the nearest seawater sampling post from the discharge point (see Appendix 4). The results show that the radiation levels of seawater remain lower than the density limit specified by the Reactor Regulation and significant change in the radioactivity has not been observed.

3. Groundwater Bypassing

In March, the pumped bypassing groundwater was discharged on the dates shown in Appendix 5. Prior to every discharge, an analysis on the quality of the groundwater to be discharged was conducted by TEPCO and the results were announced.

All the test results during the month of March have confirmed that the radiation levels of sampled water were substantially below the operational targets set by TEPCO (these operational targets are well below the density limit specified by the Reactor Regulation). The results of these analyses were also confirmed by Japan Chemical Analysis Center.

In addition, TEPCO and JAEA, at the request of the Government of Japan, regularly conduct more detailed analyses on the groundwater. The results of JAEA's latest analyses confirmed that TEPCO's analyses were accurate and verified that the radiation levels of the sampled groundwater were substantially below the operational target (see Appendix 6).

Moreover, TEPCO publishes analysis results on seawater sampled during the discharge operation at the nearest seawater sampling post from the discharge point (see Appendix 7). The result shows that the radiation levels in seawater remain lower than the density limit specified by the Reactor Regulation and significant change in the radioactivity has not been observed. The analysis had been conducted once a month until March 2017. Since April 2017, it is conducted four times a year because there has been no significant fluctuation in the concentration of radioactive materials in the sea water, and no influence on the surrounding environment has been confirmed.

The sampling process for analyses conducted this month is the same as the one conducted in the information disseminated last month. Results of the analyses are shown in the attached appendices:

(For further information, please contact TEPCO at (Tel: 03-6373-1111) or refer to the TEPCO's website:http://www.tepco.co.jp/en/nu/fukushima-np/handouts/index-e.html) Contact: International Nuclear Energy Cooperation Division,

Ministry of Foreign Affairs, Tel 03-5501-8227

Outline of Decommissioning, Contaminated Water and Treated Water Management

March 28, 2024 Secretariat of the Team for Countermeasures for Decommissioning, Contaminated Water and Treated Water

Appendix

Measures for treated water

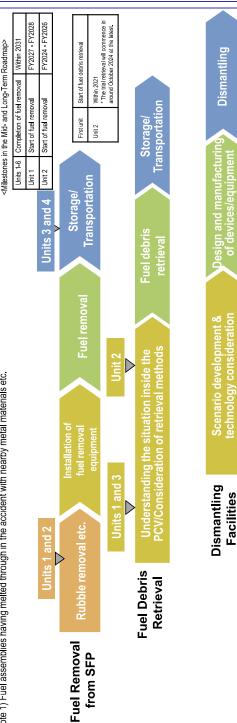
with third-party experts and having safety checked by the IAEA. Moreover,

accurate information will be disseminated with full transparency on an

Flow of discharge of ALPS treated water into the sea

Measurement / confirmation facility (K4tanio

must comply with regulatory and other safety standards to safeguard the public, the surrounding environment and agricultural, forestry and fishery products. To minimize adverse impacts on reputation, monitoring will be further enhanced and objectivity and transparency ensured by engaging


Regarding the discharge of ALPS treated water into the sea, TEPCO

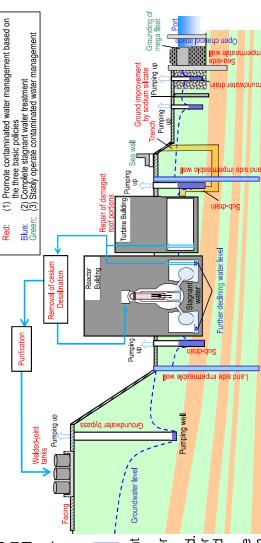
Handling of ALPS treated water

Main decommissioning work and steps

Work continues sequentially toward the start of fuel removal from Units 1 and 2 and debris (Note 1) retrieval from Units 1-3. Fuel removal from the spent fuel pool was completed in December 2014 at Unit 4 and on February 28, 2021 at Unit 3.

(Note 1) Fuel assemblies having melted through in the accident with nearby metal materials etc.

Contaminated water management - triple-pronged efforts -


- Efforts to promote contaminated water management based on the three basic policies ① "Remove" the source of water contamination ② "Redirect" fresh water from contaminated areas ③ "Retain" contaminated water from leakage
- Strontium-reduced water from other equipment is being re-treated in the Advanced Liquid Processing System (ALPS: multi-nuclide removal equipment) and stored in welded-joint tanks.
- and sub-drains, have stabilized the groundwater at a low level and the increased contaminated water generated during rainfall is being suppressed by repairing damaged portions of building Multi-layered contaminated water management measures, including land-side impermeable walls roofs facing onsite. Through these measures, the generation of contaminated water was reduced from approx. 540 m 3 /day (in May 2014) to approx. $\overline{9}$ 0 m 3 /day (in FY2022)
- Measures continue to further suppress the generation of contaminated water to 100 m³/day or

(2) Efforts to complete stagnant water treatment

- To reduce the stagnant water levels in buildings as planned, work to install additional stagnant water transfer equipment is underway.
 - In 2020, treatment of stagnant water in buildings was completed, except for the Unit 1-3 Reactor Buildings, Process Main Building and High-Temperature Incinerator Building.
- While assessing the dust impact, measures to reduce the stagnant water level were implemented In March 2023, the target water level in each building was achieved. For the Units 1-3 Reactor Buildings, "reducing stagnant water in the Reactor Buildings to about half the amount at the end of 2020 during the period FY2022-2024" was achieved.
 - For zeolite sandbags on the basement floors of the Process Main Building and High-Temperature Incinerator Building, measures to reduce the radiation dose are being examined with stabilization

Efforts to stably operate contaminated water management ල

openings in buildings and install sea walls to enhance drainage channels and other measures is sandbags are being installed to suppress direct inflow into buildings while work to close Various measures were carried out to prepare for tsunamis. As countermeasures for heavy rain being implemented as planned. •

Progress status

The temperatures of the Reactor and the Primary Containment Vessel of Units 1-3 have been maintained stable.
There was no significant change in the concentration of radioactive materials newly released from Reactor Buildings into the air. It was concluded that the comprehensive cold shutdown condition had been maintained.

Status of discharge of ALPS treated

water into the sea

parameters or the sea area monitoring. When the earthquake off the coast of Fukushima Prefecture occurred on March 15, discharge was the sea was completed on March 17 as planned. No abnormality was detected by the operation The 4th discharge of ALPS treated water into suspended as planned. After confirming that there was no abnormality on the facilities, discharge was resumed.

Regarding the FY2024 discharge plan of ALPS determined, including seven discharges during January, opinions were received from various parties and the FY2024 discharge plan was reated water, the draft was formulated in

Decommissioning Action Plan Mid-and-Long-Term

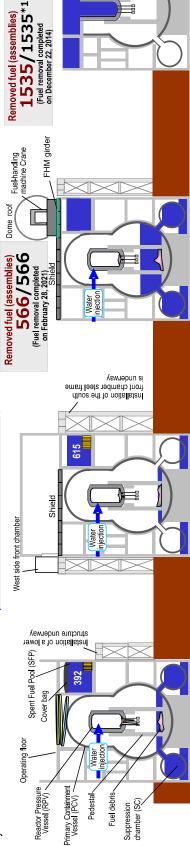
been formulated since 2020 to indicate Mid-and-Long-Term Roadmap and the achieve the milestones laid out in the the main work processes involved in Risk Map of the Nuclear Regulation Decommissioning Action Plan" has decommissioning as a whole and The "Mid- and Long-Term Authority (NRA).

commencement time of fuel debris trial Based on the FY2023 progress, the retrieval, embodiment of investigation plan was revised by reflecting the nside PCV and other matters.

Unit 1 PCV internal investigation (aerial survey)

Control Rod Drive (CRD) housing and inside PCV by a small drone (Day 2) was conducted to inspect the inner pedestal, the status of the fallen On March 14, an aerial survey wall and structures inside the others.

Moreover, the survey also detected cicle-like and lumpy objects near the damage on the concrete of the inner confirmed the absence of significant opening for CRD replacement and


Expected as equipment related to CRD

Lumpy object

<Objects near the opening for the CRD replacement inside the pedestal>

Cover for fuel

verification the acquired images. Continue to evaluation and

Completion of the seawall as countermeasures against the Japan Trench Tsunami

Unit 2

Unit 1

Reactor Building (R/B)

Installation of the seawall as countermeasures against the Japan Trench Tsunami, which commenced from June 21, 2021, was completed on March 15, 2024 (main wall; total length, approx. 1km and height, 13.5-16m above sea level).

prevent any increase in contaminated water associated with inflow he seawall will suppress flooding caused by the Japan Trench into buildings. Moreover, it will also help mitigate damage to key Sunami, the imminent occurrence of which is evaluated and decommissioning facilities

<Panoramic view of seawall as countermeasures against the Japan Trench Tsunami>

before removing deposits, work is underway to cut and remove the CRD rail guide in front of X-Ongoing work to push and cut cables continues Technology Development of the Japan Atomic 6 penetration from March 18 and push cables to the back of X-6 penetration from March 22. and subsequently, the CRD rail guide at the At the Naraha Center for Remote Control At the PCV penetration (X-6 penetration) back of X-6 penetration will be cut.

pedestal bottom by remote self-operation of the Energy Agency (JAEA), an access test to the robot arm was completed. At present, a test combining the robot arm and the dual arm manipulator is underway.

Unit 4 *1 Including two new fuel assemblies removed first in 2012.

Unit 2 Status of preparation for trial retrieval

Unit 3

<After cutting the CRD rail guide>

Results of analyses on the quality of the purified groundwater pumped from the subdrain and groundwater drain systems at Fukushima Daiichi NPS (made available by TEPCO prior to discharge)

_			(Unit: Bq/L)
Data of compling	Detected	Analytical body	
Date of sampling			Third-party
*Date of discharge	nuclides	TEPCO	organization
	0- 101		3.ga
March 27 th , 2024	Cs-134	ND (0.97)	ND (0.58)
*Discharged on	Cs-137	ND (0.70)	ND (0.57)
April 1st	Gross β	ND (1.7)	ND (0.32)
	H-3	610	660
March 25 th , 2024	Cs-134	ND (0.75)	ND (0.60)
*Discharged on	Cs-137	ND (0.68)	ND (0.48)
March 30 th	Gross β	ND (1.9)	ND (0.31)
	H-3	650	680
March 24 th , 2024	Cs-134	ND (0.62)	ND (0.63)
*Discharged on	Cs-137	ND (0.61)	ND (0.58)
March 29 th	Gross β	ND (1.8)	ND (0.32)
	H-3	600	630
	Cs-134	ND (0.91)	ND (0.73)
March 23 th , 2024	Cs-137	ND (0.79)	ND (0.58)
*Discharged on	Gross β	ND (1.5)	ND (0.32)
March 28 th	H-3	610	640
	Cs-134	ND (0.75)	ND (0.63)
March 22 nd , 2024	Cs-137	ND (0.54)	ND (0.64)
*Discharged on	Gross β	ND (1.8)	ND (0.32)
March 27 th	H-3	510	550
	Cs-134	ND (0.71)	ND (0.60)
March 21 st , 2024	Cs-137	ND (0.72)	ND (0.48)
*Discharged on	Gross β	ND (0.56)	ND (0.31)
March 26 th	H-3	540	560
March 20 th , 2024	Cs-134	ND (0.69)	ND (0.56)
	Cs-137	ND (0.59)	ND (0.54)
*Discharged on March 25 th	Gross β	ND (0.39)	ND (0.31)
	H-3	510	540
March 10th 2024			
March 19 th , 2024	Cs-134	ND (0.70)	ND (0.65)
*Discharged on	Cs-137	ND (0.54)	ND (0.54)

March 24 th	Gross β	ND (2.0)	ND (0.33)
	H-3	500	510
	Cs-134	ND (0.67)	ND (0.68)
March 18 th , 2024	Cs-137	ND (0.67)	ND (0.67)
*Discharged on March 23 th	Gross β	ND (1.8)	ND (0.31)
IVIAI CIT 23	H-3	480	510
	Cs-134	ND (0.83)	ND (0.64)
March 16 th , 2024	Cs-137	ND (0.65)	ND (0.58)
*Discharged on March 21 st	Gross β	ND (1.9)	ND (0.33)
March 21st	H-3	570	580
	Cs-134	ND (0.91)	ND (0.66)
March 12 th , 2024	Cs-137	ND (0.74)	ND (0.64)
*Discharged on	Gross β	ND (0.65)	ND (0.36)
March17 th	H-3	590	630
	Cs-134	ND (0.53)	ND (0.70)
March 10 th , 2024	Cs-137	ND (0.72)	ND (0.44)
*Discharged on	Gross β	ND (1.8)	ND (0.35)
March 15 th	H-3	630	660
	Cs-134	ND (0.56)	ND (0.63)
March 9 th , 2024	Cs-137	ND (0.72)	ND (0.61)
*Discharged on	Gross β	ND (1.8)	ND (0.35)
March 14 th	H-3	600	640
Manala 7th 0004	Cs-134	ND (0.55)	ND (0.60)
March 7 th , 2024	Cs-137	ND (0.70)	ND (0.54)
*Discharged on March 12 th	Gross β	ND (1.7)	ND (0.31)
	H-3	540	590
	Cs-134	ND (0.71)	ND (0.44)
March 5 th , 2024	Cs-137	ND (0.60)	ND (0.44)
*Discharged on	Gross β	ND (2.0)	ND (0.33)
March 10 th	H-3	570	600
	Cs-134	ND (0.63)	ND (0.58)
March 3 rd , 2024	Cs-137	ND (0.84)	ND (0.57)
*Discharged on	Gross β	ND (1.9)	ND(0.36)
March 8 th	H-3	510	550
	Cs-134	ND (0.82)	ND (0.58)
March 2 nd , 2024	Cs-137	ND (0.62)	ND (0.64)
*Discharged on March 7 th	Gross β	ND (0.65)	ND (0.37)
Maion /	H-3	510	550
February 29 th , 2024	Cs-134	ND (0.62)	ND (0.59)
*Discharged on	Cs-137	ND (0.75)	ND (0.48)
March 5 th	Gross β	ND (1.9)	ND (0.33)

	H-3	640	670
= 1	Cs-134	ND (0.86)	ND (0.66)
February27 th , 2024	Cs-137	ND (0.68)	ND (0.57)
*Discharged on March 3 rd	Gross β	ND (1.8)	ND (0.33)
IVIAICII 3°-	H-3	600	650

- * * ND: represents a value below the detection limit; values in () represent the detection limit.
- * In order to ensure the results, third-party organizations have also conducted an analysis and verified the radiation level of the sampled water.
- * Third-party organization : Tohoku Ryokka Kankyohozen Co., Ltd

Result of detailed analyses conducted by TEPCO, JAEA, and Japan Chemical Analysis Center (In order to confirm the validity of analysis, the Government of Japan also requests JAEA; and TEPCO requests Japan Chemical Analysis Center to conduct independent analyses)

(Unit: Bq/L)

	Detected	Analytical body			
Date of sampling	nuclides	JAEA	TEPCO	Japan Chemical Analysis Center	
	Cs-134	ND (0.0028)	ND (0.0069)	ND (0.0061)	
	Cs-137	0.0025	ND(0.0048)	ND (0.0049)	
February 1 st ,2024	Gross α	ND (0.42)	ND (2.0)	ND (2.1)	
Febluary 1 ,2024	Gross β	ND (0.39)	ND (0.61)	ND (0.57)	
	H-3	620	650	630	
	Sr-90	0.0069	0.0050	ND (0.0060)	

^{*} ND: represents a value below the detection limit; values in () represent the detection limit.

(Reference) (Unit: Bq/L)

Radionuclides	Operational Targets	Density Limit specified by the Reactor Regulation	World Health Organization (WHO) Guidelines for Drinking Water Quality
Cs-134	1	60	10
Cs-137	1	90	10
Gross α	_	_	_
Gross β	3 (1) *	_	_
H-3	1,500	60,000	10,000
Sr-90	_	30	10

 $[\]divideontimes$ The operational target of Gross β is 1 Bq/L in the survey which is conducted once every ten days.

The reference table shows the values of operational targets before discharge. Since the values after discharge contain natural radioactive materials in seawater, there will be differences between the values and the operational targets values.

Results of analysis on the seawater sampled near the discharge point (North side of Units 5 and 6 discharge channel)

Date of sampling	Detected nuclides	Sampling point (South discharge channel)
December 21st, 2023	Cs-134	ND (0.75)
*C	Cs-137	ND (0.70)
*Sampled before discharge of purified	Gross β	12.0
groundwater.	H-3	ND (0.37)

Results of analyses on the water quality of the groundwater pumped up for bypassing at Fukushima Daiichi NPS (made available by TEPCO prior to discharge)

			(Offic. Dq/i	
Data of compline	Detected nuclides	Analytical body		
Date of sampling *Date of discharge		TEPCO	Third-party organization	
	Cs-134	ND (0.65)	ND (0.70)	
March 8 th , 2024	Cs-137	ND (0.64)	ND (0.64)	
*Discharged on March 13 th	Gross β	ND (0.60)	ND (0.30)	
	H-3	72	79	
1.4.04b	Cs-134	ND(0.72)	ND(0.70)	
March 16 th , 2024	Cs-137	ND(0.59)	ND(0.70)	
*Discharged on March 22 nd	Gross β	ND(0.58)	ND(0.32)	
iviai GH ZZ	H-3	46	49	

- * * ND: represents a value below the detection limit; values in () represent the detection limit
- * In order to ensure the results, third-party organizations have also conducted an analysis and verified the radiation level of the sampled water.
- * Third-party organization: Tohoku Ryokka Kankyohozen Co., Ltd

Result of detailed analyses conducted by TEPCO, JAEA, and Japan Chemical Analysis Center (In order to confirm the validity of analysis, the Government of Japan also requests JAEA; and TEPCO requests Japan Chemical Analysis Center to conduct independent analyses)

(Unit: Bq/L)

		Analytical body			
Date of sampling	Detected nuclides	JAEA	TEPCO	Japan Chemical Analysis Center	
	Cs-134	ND (0.0028)	ND (0.0043)	ND (0.0058)	
	Cs-137	ND (0.0022)	ND (0.0037)	ND (0.0050)	
February 11 th ,	Gross α	ND (0.47)	ND (2.0)	ND (2.1)	
2024	Gross β	ND (0.48)	ND (0.63)	ND (0.66)	
	H-3	63	63	64	
	Sr-90	ND (0.0013)	ND (0.0013)	ND (0.0061)	

^{*} ND: represents a value below the detection limit; values in () represent the detection limit.

(Reference) (Unit: Bq/L)

Radionuclides	Operational Targets	Density Limit specified by the Reactor Regulation	World Health Organization (WHO) Guidelines for Drinking Water Quality
Cs-134	1	60	10
Cs-137	1	90	10
Gross α	_	_	_
Gross β	5 (1) *	_	_
H-3	1,500	60,000	10,000
Sr-90	_	30	10

 $[\]divideontimes$ The operational target of Gross β is 1 Bq/L in the survey which is conducted once every ten days.

^{*} The reference table shows the values of operational targets before discharge. Since the values after discharge contain natural radioactive materials in seawater, there will be differences between the values and the operational targets values.

Results of analyses on the seawater sampled near the discharge point (Around South Discharge Channel)

Date of sampling	Detected nuclides	Sampling point (South discharge channel)
	Cs-134	ND (0.80)
December 12 th , 2023	Cs-137	ND (0.72)
	Gross β	10
	H-3	ND (0.32)