

Thorium: Fuel Cycle, Potential Advantages, Challenges, and Prospective Reactors

Nuri Trianti

Research Organization for Nuclear Energy National Research and Innovation Agency, Republic of Indonesia

Nuclear Fuel Cycle in General

SCIENTIFIC FOR CLIMATE

Potential Advantages of Thorium

Progress in Nuclear Energy 2016, 93, 306e317; Nuclear Engineering and Design 2014, 271, 106–113; Thorium fuel cycle — Potential benefits and challenges, IAEA-TECDOC-1450 (2005)

Challenges of Thorium-based Fuel

Nuclear Engineering and Design 2014, 271, 106–113; The Thorium Fuel Cycle, UK National Nuclear Laboratory (2010), Thoriumfuel cycle — Potential benefits and challenges, IAEA-TECDOC-1450 (2005)

Strategies to Introduce Th-based Nuclear Fuel

- Characterizations of basic physico-chemical data at laboratory scale
- Qualification of reactor-physics and safety codes
- Testing and qualification of fuel fabrication technology
- Execution of irradiation experiments and integral testing
- Post-irradiation analyses aimed at fuel rod/assembly characterization
- Re-evaluation of safety documents of reactors and fuel cycle facilities

Irradiation time (days

() IAEA

Progress in Nuclear Energy 2021, 136, 103728; Introduction of Thorium in the Nuclear Fuel Cycle, NEA no. 7224, © OECD 2015; Progress in Nuclear Energy 2014, 72, 5e10; Annals of Nuclear Energy 2014, 64, 421–429

Brief History of Thorium Utilization in Reactors

USA

Shippingport (LBWR) USA

1970

AVR (HTGR) Germany

1960

THTR-300 (HTGR) Germany

1980

2010

ASSIVE CONTAINMEN

2020

COOLING SYSTEM

Near Termand Promising Long-Term Options for the Deployment of Thorium Based Nuclear Energy, IAEA-TECDOC-2009 (2022); Role of Thorium to Supplement Fuel Cycles of Future Nuclear Energy Systems, IAEA Nuclear Energy Series (2012)

1990

2000

Fort St Vrain (HTGR)

Prospective Reactors Using Thorium-based Fuels

Molten Salt Reactor (MSR)

Scheme of fuel cycle of MSR Th-breeder

Th, Pa, U,

Np, Pu,

FP

S. Mallapaty, Nature 2021, 597, 311-312, US Department of Energy, Nuclear Energy Research Advisory Committee

Jan Uhlíř, 8 - Chemical processing of liquid fuel, Editor(s): Thomas J. Dolan, Molten Salt Reactors and Thorium Energy, Woodhead Publishing, 2017

Prospective Reactors Using Thorium-based Fuels

Small Modular Reactor (SMR)

Burnup Calculation (Th/U)O₂ vs Reference

Power Peaking Factor of (Th/U)O₂ at the Beginning of Cycle (BOC)

Annals of Nuclear Energy 2018, 120, 422-430

Future Perspectives

- □ Thorium as a complement to the uranium/plutonium cycle
- □ Thorium minerals exploration activities need to be increased worldwide
- Develop an industrial-scale reprocessing capability to recover ²³³U from spent fuel and a fuel fabrication facility
- Increase the initiatives in research and development of thorium-based fuel and reactors
- Clear economic incentives for industries and operators of nuclear power plants using thorium-based fuel

