

4.1 Optimization of occupational radiation protection in industrial radiography Part 1

Industrial Radiography (IR)

Method of Non-Destructive Testing (NDT) also know as Radiographic Testing (RT)

Radiation sources:

- Radioactive sources
- X-ray tubes
- Linear accelerators

Location:

- Shielded enclosures / Radiation Bunkers
- In the field / customer site
- Onshore / offshore

Radiographic testing in the old days (courtesy Applus RTD, The Netherlands)

Developed film

Industrial Radiography Principle

Incident radiation

Typical use → Non Destructive Testing of :

- Welds
- Joints in pipework (pipe crawler equipment) & storage tanks
- Castings (valves, engine components)
- Tyre structure
- Screening of baggage, parcels and food products

Test object is positioned between source of ionizing radiation and film Potential defects are shown on exposed and developed film

Industries that apply RT / NDT

Industrial radiography is performed in two quite different situations

- 1. "shielded enclosure".
- 2. "site radiography"

Relevant Standards

ISO 3999

Radiation protection - Apparatus for industrial gamma radiography - Specifications for performance, design and tests

IAEA-SSR-6 (Rev.1)

Regulations for the Safe Transport of Radioactive Material

ISO 2919

Radiation protection – Sealed radioactive sources – General requirements and classification

• IAEA SSG-11

SSG-11: Radiation Safety in Industrial Radiography

Gamma radiography sources and exposure containers

- Gamma radiography is carried out with a sealed source that is stored in a safely shielded location within a specially designed exposure container;
- Exposure container is also called exposure device or "camera".

Different types of exposure containers

- The three classes of exposure containers generally operate by exposing the source in one of two ways
- Depending on the way of exposure a distinction is made between two categories of exposure containers

Gamma radiography sources and exposure containers

Classification of gamma exposure devices based on their mobillity

Portable exposure device To be carried by one or two persons (Mass < 2 x 25kg)

Mobile exposure device To be transported with suitable means

Fixed, installed exposure device To be manoeuvred within a certain limited area

Exposure Container Categories

- Shutter type or Rotating type
- Source remains fixed inside the container all times
- Solid angle of beam usually smaller than 60°, further collimation possible
- Exposing by using a handle or remote means

- "Projection Container" of "projection type"
- Source is physically projected assemblyout of the shielded exposure container inside a guide tube to the end of this tube

Categorization of gamma exposure devices based on source exposure

Category I: Source remains in device

Category II: Source is projected outside device

Category II Exposure Device

- exposure container
- sealed radioactive source
- source holder
- remote control 4
- 5 control cable and sheath
- 6 projection sheath
- exposure head 7
- 8 reserve sheath

Class P, Category II exposure device

Remote Exposure

Source assembly

Class M, Category II Exposure Device

(courtesy of Applus RTD, The Netherlands)

Class P, Category I Exposure Device

LORA ("LOw RAdiation") camera (courtesy of Applus RTD, The Netherlands)

Radioactive sources

Isotope	Gamma energy (MeV)	Half-Value time	Thickness steel equivalent (mm)	Activity (TBq)	Activity (Ci)	Doserate at 1 meter (mSv/h)
Ir-192 (NL)	0.2-1.4	74 d	10-70	5	54	175
Ir-192 (USA)				6	162	525
Se-75	0.12-0.97	120 d	4-28	3	81	127
Co-60	1.17 and 1.33	5.3 y	50-150	4	108	1,051

Maximum dose rates per Class

Class	Maximum dose rate (µSv/h)					
	On external surface	At 50 mm from external surface	At 1 m from external surface			
Р	2,000	500	20			
М	2,000	1,000	50			
F	2,000	1,000	100			

Use of gamma exposure devices

Not to be used in conditions for which they were not designed;

Effects of corrosion, moisture, mud, sand and other foreign matter are to be considered

All exposure containers are to be fitted with an integral lock;

The lock retains the key when the source is in the exposed position;

If the lock is damaged it does not prevent the source assembly from returning from the exposed to the secure position

Appropriate for and compatible with the source, the source holder or source assembly;

ISO 3999 standard: designed to ensure that the container can withstand the rigors of Industrial Radiography environments and typical usage

Metallic plate on exposure container

Metallic plate

Durable fireproof label or tag

The chemical symbol and mass number of the radionuclide

The activity and date on which it was measured in Bq (or Ci)

The identification number of the sealed source

The identity of the source manufacturer

To be changed if a new source assembly is installed in the exposure container

Shielding Material

High specific mass

High Z material

Depleted Uranium or Tungsten

Lead would make exposure container to big

be treated as radioactive material even if container is empty

properly stored

accounted for

disposed of in authorized manner

durably marked

If shielding is unknown: measure radiation level when empty (10 μ Sv/h at 10 cm)

Requirements for projection type containers

Proper coupling between source assembly and the control cable

Automatically secure of source in shielded position

Protecting covers around connecting fittings or safety plugs

Guide tubes shall have a closed end

Drive cables shall have sufficient length

Radiation levels: < 2 mSv/h at surface and < 0.1 mSv at 1 meter

Ancillary equipment should be compatible

Typical lengths

Control	Control cables: 7 – 15 m
Guide	Guide tubes: 2 – 6.5 m
Maximise	Maximise distance between radiographer and source

Gamma energy suitable for IR

Fairly long Half-life (> 1 month)

ISO 2919:2012 \rightarrow Radiological protection — Sealed radioactive sources

Special form Radioactive Material

ISO 2919 Sealed radioactive sources -Classification

Safety is the prime consideration;

System of classification based on performance specifications;

Manufacturer can evaluate the safety of his product;

User can select suitable sources for his application

Site Radiography – Gamma Radiography Typical Stages during Normal Exposure

