

Ocean Acidification International Coordination Centre



#### UNIVERSITY OF GOTHENBURG



#### **Basic training course on ocean acidification**

EVT1804704

14-19 March 2022

### How to manipulate the chemistry



### Preliminary considerations

- Ocean acidification is a multistressor change
  *What parameter(s) matter for my organism/ecosystem?*
- ✓ Do I want to keep the tested parameter (e.g. pH) constant or fluctuating?
- Is my experiment *realistic* (mimicking ocean acidification) *or mechanistic* (testing physiological hypothesis)?

# What is a realistic ocean acidification carbonate chemistry change?

|           | pCO <sub>2 sw</sub><br>(µatm) | рН <sub><i>T</i></sub><br>(–) | [H <sup>+</sup> ]<br>(a) | TA<br>(b) | DIC<br>(b) | [CO <sub>2</sub> ]<br>(b) | [HCO <sub>3</sub> <sup>-</sup> ]<br>(b) | [CO <sub>3</sub> <sup>2-</sup> ]<br>(b) | $\Omega_c$<br>(-) | Ω <sub>a</sub><br>(-) |
|-----------|-------------------------------|-------------------------------|--------------------------|-----------|------------|---------------------------|-----------------------------------------|-----------------------------------------|-------------------|-----------------------|
| Year 2007 | 384                           | 8.065                         | 8.6                      | 2325      | 2065       | 12.8                      | 1865                                    | 187                                     | 4.5               | 2.9                   |
| Year 2100 | 793                           | 7.793                         | 16.1                     | 2325      | 2191       | 26.4                      | 2055                                    | 110                                     | 2.6               | 1.7                   |
|           |                               | ↓                             |                          | =         | 1          |                           |                                         | ↓                                       | ↓                 | ↓                     |

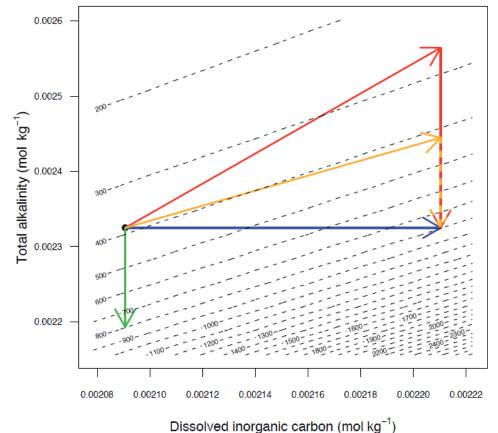
Part 1: Seawater carbonate chemistry

#### 2 Approaches and tools to manipulate the carbonate chemistry

Jean-Pierre Gattuso1,2, Kunshan Gao3, Kitack Lee4, Björn Rost5 and Kai G. Schulz6

<sup>1</sup>Laboratoire d'Océanographie, CNRS, France <sup>2</sup>Observatoire Océanologique, Université Pierre et Marie Curie-Paris 6, France <sup>3</sup>State Key Laboratory of Marine Environmental Science, Xiamen University, China <sup>4</sup>Pohang University of Science and Technology, South Korea <sup>5</sup>Alfred Wegener Institute for Polar and Marine Research, Germany <sup>6</sup>Leibniz Institute of Marine Sciences (IFM-GEOMAR), Germany Important to use water with the same properties than the sampling site

- ✓ Many methods are available to manipulate the carbonate chemistry for an experiment
- ✓ Whatever laboratory and equipment you have, there is a method for you


### NON-best practice methods

## ✓ Add strong acid (e.g. HCl) ✓ Add HCO<sub>3</sub><sup>-</sup>, CO<sub>3</sub><sup>2-</sup>

|                                                        | pCO <sub>2 sw</sub><br>(µatm) | рН <sub><i>T</i></sub><br>(–) | [H <sup>+</sup> ]<br>(a) | TA<br>(b)    | DIC<br>(b)  | [CO <sub>2</sub> ]<br>(b) | [HCO <sub>3</sub> <sup>-</sup> ]<br>(b) | [CO <sub>3</sub> <sup>2-</sup> ]<br>(b) | $\Omega_c$<br>(-) | Ω <sub>a</sub><br>(-) |
|--------------------------------------------------------|-------------------------------|-------------------------------|--------------------------|--------------|-------------|---------------------------|-----------------------------------------|-----------------------------------------|-------------------|-----------------------|
| Year 2007                                              | 384                           | 8.065                         | 8.6                      | 2325         | 2065        | 12.8                      | 1865                                    | 187                                     | 4.5               | 2.9                   |
| Year 2100                                              | 793                           | 7.793                         | 16.1                     | 2325         | 2191        | 26.4                      | 2055                                    | 110                                     | 2.6               | 1.7                   |
| Addition of $CO_3^{2-}$ and $HCO_3^-$ ; closed sys.    | 793                           | 7.942                         | 11.4                     | 3406         | 3146        | 26.4                      | 2901                                    | 218                                     | 5.2               | 3.4                   |
| Addition of $CO_3^{2-}$ and $HCO_3^{-}$ ; open sys.    | 384                           | 8.207                         | 6.2                      | 3406         | 2950        | 12.8                      | 2580                                    | 357                                     | 8.5               | 5.5                   |
| Acid addition; closed sys.<br>Acid addition; open sys. | 793<br>384                    | 7.768<br>8.042                | 17.1<br>9.1              | 2184<br>2184 | 2065<br>194 | 26.4<br>12.8              | 1940<br>1767                            | 98<br>167                               | 2.3<br>4          | 1.5<br>2.6            |

### Add strong acid, HCO<sub>3</sub><sup>-</sup> and CO<sub>3</sub><sup>2-</sup>

 $CO_2$  bubbling and seawater mixing Addition of strong acid Addition of  $HCO_3^-$  and strong acid Addition of  $CO_3^{2-}$  and strong acid



### Add strong acid, $HCO_3^-$ and $CO_3^{2-}$

|                                         | pCO <sub>2 sw</sub><br>(µatm) | рН <sub><i>T</i></sub><br>(–) | [H <sup>+</sup> ]<br>(a) | TA<br>(b) | DIC<br>(b) | [CO <sub>2</sub> ]<br>(b) | [HCO <sub>3</sub> <sup>-</sup> ]<br>(b) | [CO <sub>3</sub> <sup>2-</sup> ]<br>(b) | $\Omega_c$<br>(-) | Ω <sub>a</sub><br>(–) |
|-----------------------------------------|-------------------------------|-------------------------------|--------------------------|-----------|------------|---------------------------|-----------------------------------------|-----------------------------------------|-------------------|-----------------------|
| Year 2007                               | 384                           | 8.065                         | 8.6                      | 2325      | 2065       | 12.8                      | 1865                                    | 187                                     | 4.5               | 2.9                   |
| Year 2100                               | 793                           | 7.793                         | 16.1                     | 2325      | 2191       | 26.4                      | 2055                                    | 110                                     | 2.6               | 1.7                   |
| Addition of:                            |                               |                               |                          |           |            |                           |                                         |                                         |                   |                       |
| $CO_3^{2-}$ and $HCO_3^-$ ; closed sys. | 400                           | 8.073                         | 8.4                      | 2467      | 2191       | 13.3                      | 1977                                    | 201                                     | 4.8               | 3.1                   |
| followed by acid addition; closed sys.  | 793                           | 7.793                         | 16.1                     | 2325      | 2191       | 26.4                      | 2055                                    | 110                                     | 2.6               | 1.7                   |

Precise, cheap, easy (e.g. field) to prepare water
 with desire chemistry
 No compensation for biology and atmosphere, manual changes

### Mix High CO<sub>2</sub> water

Seawater (filtered, aerated 384µatm; pH 8.1)



Seawater (pH 8.1)

Heavily bubble

with pure CO<sub>2</sub> for

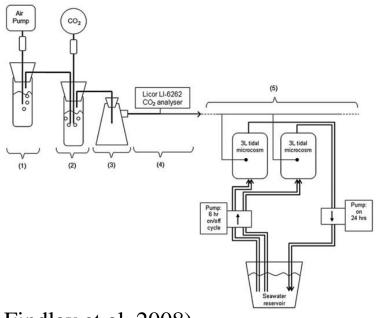
2 minutes

(pH ~5.5)

Mix till reach the desire pH/pCO<sub>2</sub>

### Mix High CO<sub>2</sub> water

|                                           | pCO <sub>2 sw</sub><br>(µatm) | рН <sub><i>T</i></sub><br>(–) | [H <sup>+</sup> ]<br>(a) | TA<br>(b) | DIC<br>(b) | [CO <sub>2</sub> ]<br>(b) | [HCO <sub>3</sub> <sup>-</sup> ]<br>(b) | [CO <sub>3</sub> <sup>2-</sup> ]<br>(b) | $\Omega_c$<br>(-) | Ω <sub>a</sub><br>(–) |
|-------------------------------------------|-------------------------------|-------------------------------|--------------------------|-----------|------------|---------------------------|-----------------------------------------|-----------------------------------------|-------------------|-----------------------|
| Year 2007                                 | 384                           | 8.065                         | 8.6                      | 2325      | 2065       | 12.8                      | 1865                                    | 187                                     | 4.5               | 2.9                   |
| Year 2100                                 | 793                           | 7.793                         | 16.1                     | 2325      | 2191       | 26.4                      | 2055                                    | 110                                     | 2.6               | 1.7                   |
| Addition of high-CO <sub>2</sub> seawater | 792                           | 7.793                         | 16.1                     | 2325      | 2191       | 26.4                      | 2055                                    | 110                                     | 2.6               | 1.7                   |


Precise, cheap, easy (e.g. field) to prepare water
 with desire chemistry
 No compensation for biology and atmosphere, manual changes

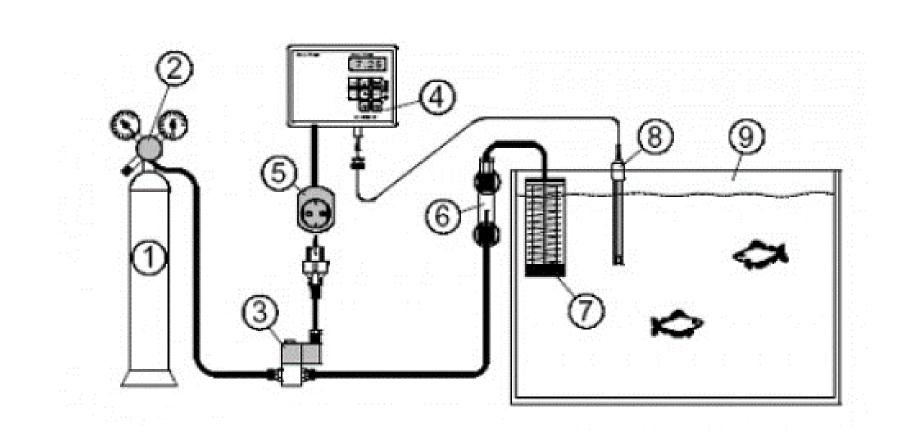
## Bubble with CO<sub>2</sub> at the target concentration (ppm) Buy pre-mixed gas (expensive)



✓ Bubble with  $CO_2$  at the target concentration (ppm)

- Buy pre-mixed gas (expensive)
- Gas mixer (manual)
- Gas mixer (automatic)




(e.g. Findlay et al. 2008)

✓ Bubble with CO<sub>2</sub> at the target concentration (ppm)
 ○ Buy pre-mixed gas (expensive)
 ○ Gas mixer (manual)
 ○ Gas mixer (automatic)

✓ Bubble with pure CO<sub>2</sub>
 ○ pH stats

### pH stat

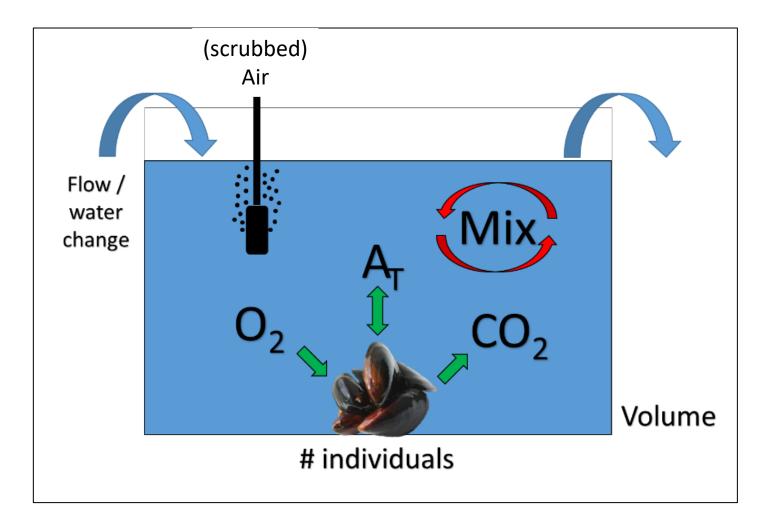




|              | pCO <sub>2 sw</sub><br>(µatm) | рН <sub><i>T</i></sub><br>(–) | [H <sup>+</sup> ]<br>(a) | TA<br>(b) | DIC<br>(b) | [CO <sub>2</sub> ]<br>(b) | [HCO <sub>3</sub> <sup>-</sup> ]<br>(b) | [CO <sub>3</sub> <sup>2-</sup> ]<br>(b) | $\Omega_c$<br>(-) | Ω <sub>a</sub><br>(-) |
|--------------|-------------------------------|-------------------------------|--------------------------|-----------|------------|---------------------------|-----------------------------------------|-----------------------------------------|-------------------|-----------------------|
| Year 2007    | 384                           | 8.065                         | 8.6                      | 2325      | 2065       | 12.8                      | 1865                                    | 187                                     | 4.5               | 2.9                   |
| Year 2100    | 793                           | 7.793                         | 16.1                     | 2325      | 2191       | 26.4                      | 2055                                    | 110                                     | 2.6               | 1.7                   |
| Gas bubbling | 793                           | 7.793                         | 16.1                     | 2325      | 2191       | 26.4                      | 2055                                    | 110                                     | 2.6               | 1.7                   |

Precise, more or less easy, compensation for
 respiration/photosynthesis, dynamic control
 More expensive (equipment, gas), may limit
 replication (e.g. pH stats)

### Summary: 3 best practice methods


✓ Add strong acid,  $HCO_3^-$  and  $CO_3^{2-}$ 

- ✓ Mix High  $CO_2$  waters
- ✓ Bubble  $CO_2$ 
  - Keep CO<sub>2</sub> constant
  - Keep pH constant

Batch of seawater

Dynamic control

# What to consider to keep the chemistry constant?



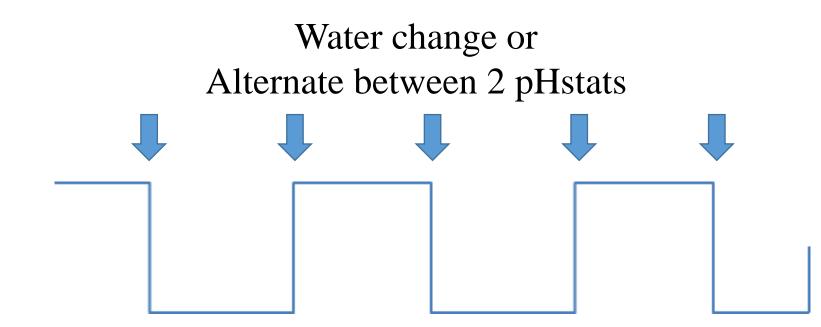
Sometime, you need to filter the water (NOT autoclave)

# Example: manually made seawater, little biology, closed system

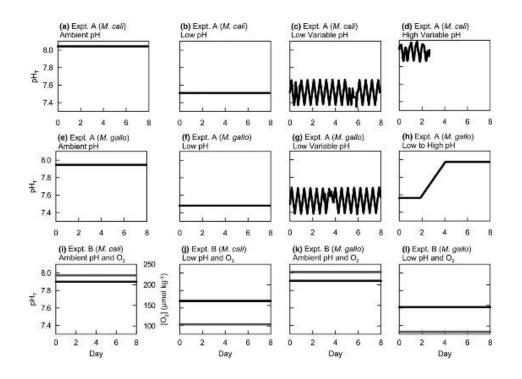


## No contact with air

# Example: manually made seawater, little biology, closed system




## No contact with air


### Fluctuating chemistry

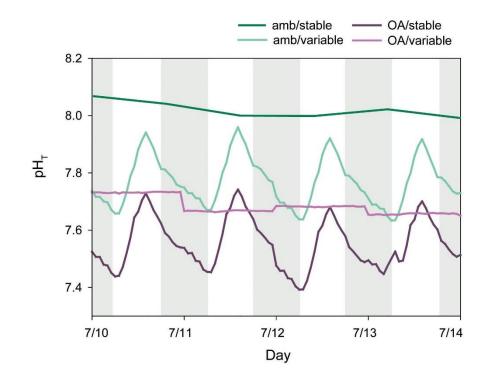
- ✓ Chemistry is rarely stable in the field. It can be desirable to include variability into experimental design:
  - Realistic (mimicking field)
  - o Mechanistic

- ✓ Manual water change
- ✓ Creative use of pH or  $pCO_2$  stats



## ✓ Manual water change ✓ Creative use of pH or pCO<sub>2</sub> stats



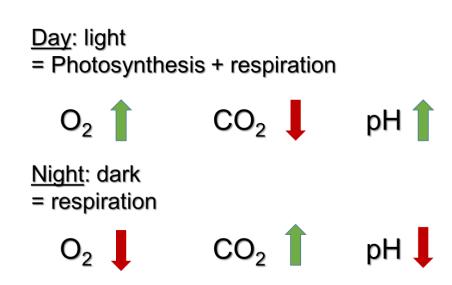

#### Global Change Biology

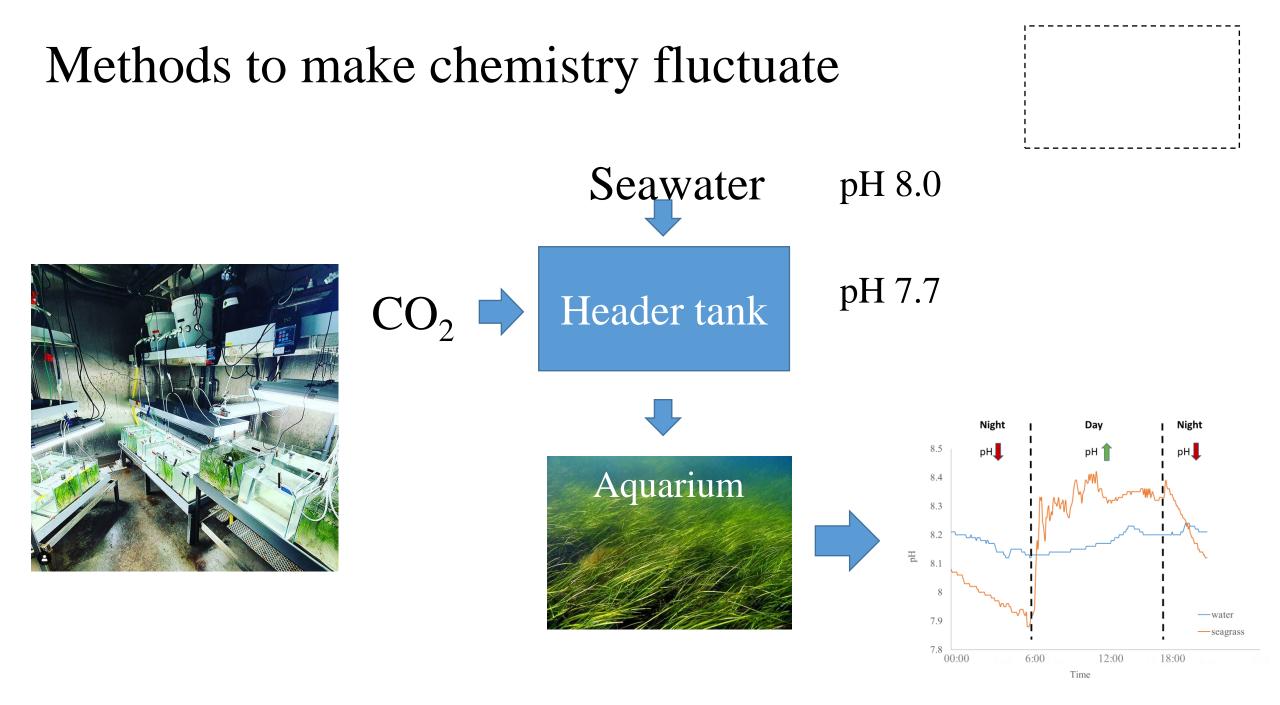
Primary Research Article 🙃 Full Access

Can variable pH and low oxygen moderate ocean acidification outcomes for mussel larvae?

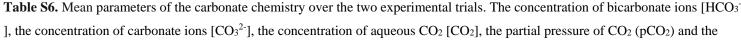
Christina A. Frieder 🕿, Jennifer P. Gonzalez, Emily E. Bockmon, Michael O. Navarro, Lisa A. Levin First published: 16 December 2013 | https://doi.org/10.1111/gcb.12485 | Citations: 76

- ✓ Manual water change
- ✓ Creative use of pH stats
- ✓ Automatic control (e.g. offset)





#### pH Variability Exacerbates Effects of Ocean Acidification on a Caribbean Crustose Coralline Alga

🛖 Maggie D. Johnson<sup>1,2,3\*</sup>, 🔝 Lucia M. Rodriguez Bravo<sup>1</sup>, 🏆 Shevonne E. O'Connor<sup>4</sup>, 🚬 Nicholas F. Varley<sup>5</sup> and 🧝 Andrew H. Altieri<sup>1,6</sup>


- ✓ Manual water change
- ✓ Creative use of pH stats
- ✓ Automatic control (e.g. offset)
- ✓ Biologically-driven variability







### "Unrealistic" seawater chemistry to test specific hypotheses



aragonite saturation state ( $\Omega_a$ ) were derived from pH<sub>T</sub>, total alkalinity, salinity and temperature.

| CO <sub>3</sub> <sup>2-</sup> conditions | HCO <sub>3</sub> -<br>conditions  | [HCO3 <sup>-</sup> ]<br>(µmol kg <sup>-1</sup> ) | [CO3 <sup>2-</sup> ]<br>(µmol kg <sup>-1</sup> ) | [CO2]<br>(µmol kg <sup>-1</sup> ) | pCO <sub>2</sub><br>(µatm) | $\Omega_{\mathrm{a}}$ | A <sub>T</sub><br>(μmol kg <sup>-1</sup> ) | $\mathbf{p}\mathbf{H}_{\mathrm{T}}$ | Tempera<br>(°C) |
|------------------------------------------|-----------------------------------|--------------------------------------------------|--------------------------------------------------|-----------------------------------|----------------------------|-----------------------|--------------------------------------------|-------------------------------------|-----------------|
|                                          | High HCO3 <sup>-</sup>            | $2243\pm8$                                       | $75\pm2$                                         | $56 \pm 3$                        | $2108\pm86$                | $1.20\pm0.03$         | $2424\pm 6$                                | $7.44 \pm 0.01$                     | 27.7 ± (        |
| Low CO <sub>3</sub> <sup>2-</sup>        | Med HCO <sub>3</sub> -            | $1695\pm12$                                      | $85 \pm 2$                                       | $27\pm1$                          | $1047\pm29$                | $1.35\pm0.03$         | $1910\pm13$                                | $7.62\pm0.01$                       | $27.7 \pm ($    |
|                                          | Low HCO3 <sup>-</sup>             | $1025\pm32$                                      | $82\pm5$                                         | $13 \pm 3$                        | $503 \pm 125$              | $1.32\pm0.08$         | $1258\pm42$                                | $7.80 \pm 0.03$                     | $27.5 \pm 0$    |
| Mediun                                   | High HCO <sub>3</sub> -           | $2287 \pm 19$                                    | $223\pm7$                                        | $19 \pm 1$                        | $733\pm22$                 | $3.58\pm0.12$         | $2814 \pm 14$                              | $7.91 \pm 0.01$                     | 27.7 ± (        |
| $CO_3^{2-}$                              | Med HCO <sub>3</sub> <sup>-</sup> | $1731\pm7$                                       | $227\pm3$                                        | $11\pm0.2$                        | $401\pm7$                  | $3.65\pm0.05$         | $2289\pm 6$                                | $8.04\pm0.01$                       | $27.7 \pm ($    |
| 03                                       | Low HCO3 <sup>-</sup>             | $1069\pm21$                                      | $203\pm7$                                        | $5\pm0.4$                         | $188 \pm 15$               | $3.26\pm0.11$         | $1612\pm21$                                | $8.19\pm0.02$                       | $27.8 \pm 0$    |
| High                                     | High HCO3 <sup>-</sup>            | 2334 ± 17                                        | $384 \pm 5$                                      | $11 \pm 0.2$                      | $435\pm8$                  | $6.17\pm0.09$         | $3224\pm24$                                | $8.13\pm0.01$                       | 27.8 ± (        |
| $CO_3^{2-}$                              | Med HCO <sub>3</sub> <sup>-</sup> | $1802\pm13$                                      | $381\pm5$                                        | $7\pm0.2$                         | $257\pm8$                  | $6.11\pm0.08$         | $2712 \pm 12$                              | $8.25\pm0.01$                       | $27.4 \pm 0$    |
| 03                                       | Low HCO3 <sup>-</sup>             | $1195 \pm 14$                                    | $365 \pm 5$                                      | $3 \pm 0.1$                       | $120\pm5$                  | $5.82\pm0.08$         | $2114\pm8$                                 | $8.41\pm0.01$                       | 27.5 ± (        |



Coral reef calcifiers buffer their response to ocean acidification using both bicarbonate and carbonate

Department of Biology, Gallonia State University, 18111 Northoff Street, Northridge, CA 91330-8383, USA Central to evaluating the effects of ocean acidification (OA) on coral reefs is understanding how calcification is affected by the dissolution of CO<sub>2</sub> in sea

water, which causes declines in carbonate ion concentration [CO2-] and increases in bicarbonate ion concentration [HCO3]. To address this topic,

we manipulated [CO<sub>3</sub><sup>2</sup>] and [HCO<sub>3</sub>] to test the effects on calcification of the coral Porites rus and the alga Hydrolithon onkodes, measured from the

start to the end of a 15-day incubation, as well as in the day and night.

[CO<sub>2</sub><sup>2-</sup>] played a significant role in light and dark calcification of P. rus,

and [HCO3] had a significant effect on the calcification of H. onkodes, but

the strongest relationship was found with  $[CO_3^2]$ . Our results show that the negative effect of declining  $[CO_3^2]$  on the calcification of corals and algae can be partly mitigated by the use of HCO<sub>3</sub> for calcification and perhaps photosynthesis. These results add empirical support to two conceptual

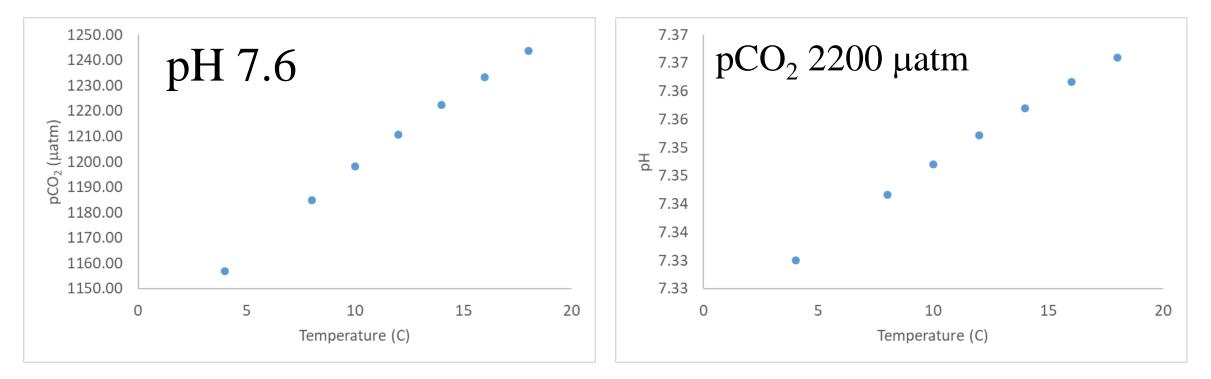
models that can form a template for further research to account for the

calcification response of corals and crustose coralline algae to OA.

whereas [HCO<sub>3</sub>] mainly affected calcification in the light. Both [CO<sub>3</sub><sup>2-</sup>]

S. Comeau, R. C. Carpenter and P. J. Edmunds

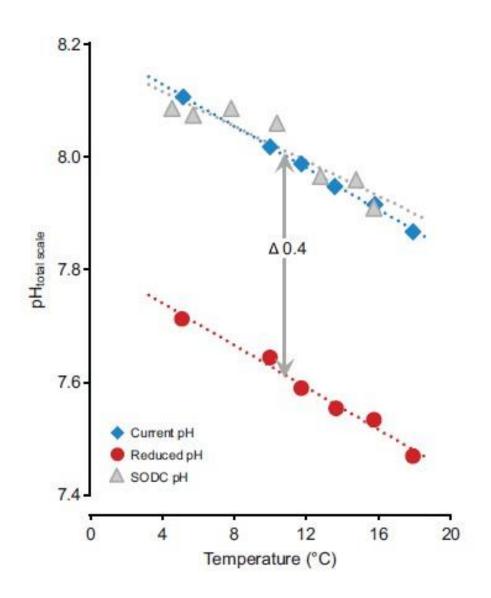
#### rspb.royalsocietypublishing.org




Cite this article: Comeau S, Carpenter BC, Edmunds PJ. 2012 Coral ref caloffers buffer their response to cosm addification using both bicarbonate and carbonate. Proc R Soc B 280: 20122374. http://dx.doi.org/10.1098/rspb.2012.2374

Received: 7 October 2012 Accepted: 23 November 2012

### Specific $HCO_3^-$ and $CO_3^{2-}$ concentration using $CO_2$ , HCl, NaOH and $Na_2CO_3$


### Caution: need some serious design for multiple drivers experiment with parameters interacting with the carbonate chemistry

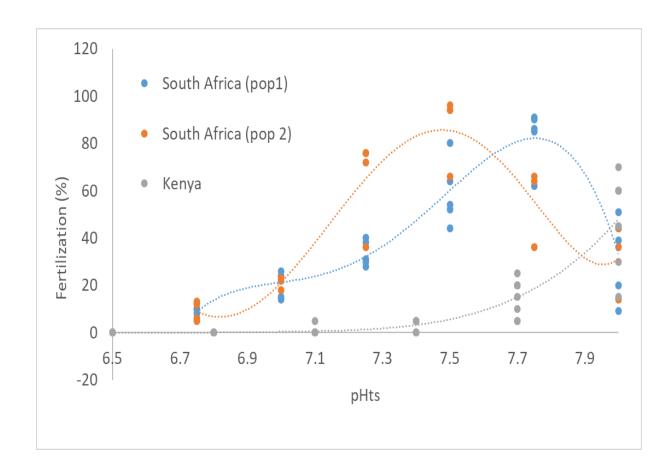


#### Same pH = different pCO2

#### Same pCO2 = different pH

### One solution: offset natural pH




Different combination of pH / temperature for each temperature

(Grans et al. 2014)

### Take home message

- ✓ Many methods are available to manipulate the<sup>⊥</sup> carbonate chemistry for an experiment
- ✓ Use the best approach for your question (or you question based on what you can do)
- ✓ Make pilot experiments to optimize your system
- ✓ Whatever laboratory and equipment you have, there is a method for you

# You don't need fancy equipment to make a nice experiment if you have a good question





- ✓ Manual  $CO_2$  manipulation
- ✓ Multi-well plates
- ✓ Microscope, pipettes
- ✓ pH meter, sampling alkalinity
- ✓ Fertilization assay (2h)