

Radioecology

Environment Laboratories

works with its Member States and multiple partners worldwide to promote the safe, secure and peaceful use of nuclear technologies.

3 main areas of work underpin the IAEA's mission: Safety and Security Safeguards and Verification S

Science and Technology

Department of Nuclear Sciences and Applications

ATOMS FOR PEACE AND DEVELOPMENT How the IAEA supports the Sustainable Development Goals

Many applications

ENVIRONMENT

Environmental issues

Environment Laboratories

Ocean are increasingly threatened

- Historical chemical contamination (metal, nutrient, organics)
- Emerging new compounds
- Other pollutants (plastics)
- Change of abiotic conditions (pH, Temp and O₂)

Environment Laboratories

REDUCE MARINE POLLUTION

OCEAN HEALTH

Environment Laboratories

Important role of Science and Technology in order to understand risks and to improve situation

This includes Nuclear and Isotopic techniques (NIT)

Environment Laboratories

Nuclear and Isotopic techniques (NIT):

Any techniques that are using the characteristics of radio-isotopes and isotopes

Different **isotopes** of the same element have the same number of protons in their atomic nuclei but differing numbers of neutrons. Same > chemical element, number of protons (thus same atomic number) Different > number of neutrons (thus different mass number) **Radioisotopes** are **radioactive isotopes** of an element. They can also be defined as atoms that contain an unstable combination of neutrons and protons, or excess energy in their nucleus.

Environment Laboratories

Nuclear and Isotopic techniques (NIT): Any techniques that are using the characteristics of radio-isotopes and isotopes

Different **isotopes** of the same element have the same number of protons in their atomic nuclei but differing numbers of neutrons.

Same > chemical element, number of protons (thus same atomic number) Different > number of neutrons (thus different mass number)

Radioisotopes are **radioactive isotopes** of an element. They can also be defined as atoms that contain an unstable combination of neutrons and protons, or excess energy in their nucleus.

Environment Laboratories

Nuclear and Isotopic techniques (NIT): Any techniques that are using the characteristics of radio-isotopes and isotopes

Different **isotopes** of the same element have the same number of protons in their atomic nuclei but differing numbers of neutrons.

Same > chemical element, number of protons (thus same atomic number) Different > number of neutrons (thus different mass number)

Radioisotopes are **radioactive isotopes** of an element. They can also be defined as atoms that contain an unstable combination of neutrons and protons, or excess energy in their nucleus.

Environment Laboratories

Nuclear and Isotopic techniques (NIT): Any techniques that are using the characteristics of radio-isotopes and isotopes

Different **isotopes** of the same element have the same number of protons in their atomic nuclei but differing numbers of neutrons.

Same > chemical element, number of protons (thus same atomic number) Different > number of neutrons (thus different mass number)

Radioisotopes are **radioactive isotopes** of an element. They can also be defined as atoms that contain an unstable combination of neutrons and protons, or excess energy in their nucleus.

Understanding the environment applying isotopic and nuclear techniques

- to study environmental processes in time and space;
- to study pollution and its temporal evolution;
- to recognise and identify polluters by their typical isotopic pattern;
- to contribute to climate change studies;
- to conduct radioecological studies and assessments;

Marine radioecology

Marine radioecology examines how radioactive substances interact with marine environment and the various mechanisms and processes that influence radionuclides migration in the marine ecosystem

The field of study includes aspects of field sampling, design of the field and laboratory radiotracer experiments, the development of predictive simulation models, dose assessments to humans and biotas

Radionuclides as tracers of oceanographic processes

Conveyor Belt (earth climate driver) ³H, ³He, ¹⁴C, ⁹⁰Sr, ⁹⁹Tc, ¹²⁹I, ¹³⁷Cs, ²³⁶U

Carbon Cycle

Seafood Safety - Harmful Algal Blooms (marine toxins)

Toxic Microalgae

Species Responsible for Paralytic Shellfish Poisoning

Gymnodinium

Dinophysis miles

Species Responsible for Diarrhetic Shellfish Poisoning

Dinophysis acuminata Dinophysis mitra Dinophysis fortii

Species Responsible for **Neurotoxic Shellfish Poisoning**

Gymnodinium breve Species Responsible for Amnesic Shellfish Poisoning

avata

Pseudonitzschia spp.

klebsii

Dinophysis

Species Responsible for and implicated in Ciguatera Fish Poisoning

Gambierdiscus toxicus Ostreopsis Ienticularis

Coolia monotis

Amphidinium carterae

Pollution studies, monitoring, coastal zone management

International Atomic Energy Agency

Main categories and interest (Marine Environment) Radioisotopes

- As a contaminant (¹³⁴Cs, ¹³⁷Cs, ⁶⁰Co, Po, Americium)
- As an element of interest (essential or not):
 - e.g. Ag, Pb, Cd, Hg, Ni, Ca, Zn, Co, Mn, Se, C
- To label a contaminant or molecule of interest (e.g. ¹⁴C organics, ³H-petides)

Main categories and interest (Marine Environment) Radioisotopes

- As a contaminant (¹³⁴Cs, ¹³⁷Cs, ⁶⁰Co, Po, Americium)
- As an element of interest (essential or not):
 - e.g. Ag, Pb, Cd, Hg, Ni, Ca, Zn, Co, Mn, Se, C
- To label a contaminant or molecule of interest (e.g. ¹⁴C organics, ³H-petides)
- As a proxi to highlight physiological effect of another stressor

(e.g. plastics, Global and local, toxins,...) to understand environment such as water masses or geochronology (natural and anthropogenic radionuclides)

Stable isotopes

• As a proxi to characterize ecosystem dynamics or physiological effect of another stressor

Equipment/ Analytical techniques

Nuclear magnetic resonance (metabolites), IRMS (isotopes) FTIR (Plastics), X-ray spectrometry

Marine Environment Laboratories

Radioecology Laboratory

Experiments using NA for understanding: Contamination, Biology, Ecology, Risk Mimicking or predicting environmental conditions

Gamma emitters: ⁵¹Cr, ⁵⁴Mn, ⁵⁷Co, ⁶⁵Zn, ⁷³As, ^{110m}Ag, ¹⁰⁹Cd, ¹³⁴Cs, ²⁰³Hg, ²¹⁰Pb Beta emitters: ¹⁴C, ³H, ⁴⁵Ca, ⁶³Ni Surfactants, Pesticides, PCB

- → Bioaccumulation of contaminants
- → Physiological endpoints after exposure (proxy)
- → Sourcing main uptake pathway

A Unique Tool in Ecotoxicological Studies

Highly sensitive and the cost-effective

- Radioanalysis of live organisms (gamma)
- Experiments conducted under realistic exposure conditions
- Relative contribution of different contamination pathways

See review of Warnau & Bustamante 2007

Measurements of radiotracers

Gamma spectroscopy

Germanium or Nal counters

Liquid scintillation counters

L'ACIDIFICATION DES OCÉANS: UNE RÉELLE MENACE.

« It seems that worse comes to worst »

« Why are you saying that ? »

ACID REEFS. N°3

Radiotracers and Ocean Acidification

High-value ecosystem such as coral reefs (high biodiversity, tourism,...)

Use of radiotracer (γ-emitter) to measure impact of OA on pollutants availability

Possible toxic impact on organisms

Concentration in seafood for human risk assessment

Biogeosciences, 17, 887–899, 2020 https://doi.org/10.5194/bg-17-887-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

Intercomparison of four methods to estimate coral calcification under various environmental conditions

Miguel Gómez Batista¹, Marc Metian², François Oberhänsli², Simon Pouil², Peter W. Swarzenski², Eric Tambutté³, Jean-Pierre Gattuso^{4,5}, Carlos M. Alonso Hernández¹, and Frédéric Gazeau⁴

Total alkalinity anomaly (TAA) vs calcium anomaly vs ⁴⁵Ca incorporation vs ¹³C incorporation

Check for updates

REPORT

Ocean acidification effects on calcification and dissolution in tropical reef macroalgae

C. McNicholl^{1,2} · M. S. Koch¹ · P. W. Swarzenski² · F. R. Oberhaensli² · A. Taylor² · M. Gómez Batista³ · M. Metian²

Ca45 --> Gross calcification Total alkalinity anomaly (TAA) --> Net calcification = gross calcification minus gross dissolution

Techniques used in tandem

provide the best opportunity to separate the effects of OA on calcification versus dissolution

Effect on the chemistry (not only on arbonate chemistry)

Example with metals

Table 1. The fraction forms of metals in seawater as a function of pH and time (Caldeira and Wickett, 2003) at 25°C and salinity of 35. Species contributing less than 5% are not included. All the calculations are made on the free pH scale.

YEAR	2000	2050	2070	2085	2100	2150	2200	2250	
рН	8.1	8	7.9	7.8	7.7	7.6	7.5	7.4	
MAJOR SPECIES									
Cu ²⁺	7.67	9.64	12.04	14.92	18.32	22.26	26.75	31.76	Free ions
CuOH⁺	4.70	4.70	4.66	4.59	4.47	4.30	4.12	3.88	Most toxic form
CuCO ₃	66.98	68.51	69.25	69.14	68.14	66.25	63.50	59.96	
$Cu(CO_3)_2^{2-}$	18.34	15.26	12.49	10.05	7.95	6.18	4.70	3.55	[Cu ²⁺] augmente!!!
CuSO ₄	-	-	-	-	-	-	-	-	

7.8

8

200

7.2

7.4

7.6

pН

Marc Metian^b

Pb in mussel soft tissue

special issue feature by FRANK J. MILLERO, RYAN WOOSLEY, BENJAMIN DITROLIO, AND JASON WATERS **Effect** of **Ocean Acidification** on the Speciation of Metals in Seawater

WELL KNOWN FOR COPPER Free ions Most toxic form [Cu²⁺] Increase!!!

YEAR	2000	2050	2070	2085	2100	2150	2200	2250
рН	8.1	8	7.9	7.8	7.7	7.6	7.5	7.4
MAJOR SPECIES								
Pb ²⁺	2.89	3.29	3.70	4.13	4.56	4.99	5.39	5.77
РЬОН⁺	4.24	3.83	3.40	3.03	2.66	2.31	1.98	1.68
РЬСО3	59.03	54.53	49.72	44.71	39.64	34.65	29.88	25.43
РЬСІ⁺	13.09	14.86	16.74	18.68	20.63	22.54	24.37	26.07
PbCl ₂	14.09	16.00	18.02	20.10	22.21	24.60	26.23	28.06
PbCl ₃	6.40	7.27	8.19	9.14	10.09	11.03	11.93	12.76

For Pb > big shift of fraction in major species

RESEARCH ARTICLE

Trophic transfer of essential elements in the clownfish *Amphiprion ocellaris* in the context of ocean acidification

Hugo Jacob^{1,2}, Simon Pouil^{1,3}, David Lecchini^{2,4}, François Oberhänsli¹, Peter Swarzenski¹, Marc Metian¹*

OA and temperature on element bioaccumulation

3 pH & 2 temperatures – waterborne - oysters

Belivermiş et al. ICES J Mar Sci 2016

Journal of Environmental Radioactivity 192 (2018) 10-13

Contents lists available at ScienceDirect

Journal of Environmental Radioactivity

journal homepage: www.elsevier.com/locate/jenvrad

The absence of the pCO_2 effect on dissolved ¹³⁴Cs uptake in select marine organisms

Thomas Lacoue-Labarthe^{a,b,*}, François Oberhänsli^a, Jean-Louis Teyssié^a, Marc Metian^a

^a International Atomic Energy Agency, Environment Laboratories, 4a Quai Antoine Ier, Monaco

^b Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS, Université de La Rochelle, 2 rue Olympe de Gouges, La Rochelle, France

Next step in our lab ... alkalinization.

Published: 24 February 2016

Reversal of ocean acidification enhances net coral reef calcification

Rebecca Albright [⊡], Lilian Caldeira, Jessica Hosfelt, Lester Kwiatkowski, Jana K. Maclaren, Benjamin M. Mason, Yana Nebuchina, Aaron Ninokawa, Julia Pongratz, Katharine L. Ricke, Tanya Rivlin, Kenneth Schneider, Marine Sesboüé, Kathryn Shamberger, Jacob Silverman, Kennedy Wolfe, Kai Zhu & Ken Caldeira

Nature **531**, 362–365 (2016) <u>Cite this article</u>

Environmental variable or issues

Assimilation of Cs in Turbots : Influence of salinity

Pouil et al. (2018) JEnvRad

Bioaccumulation of elements in mussels: Influence of dissolved O₂ decrease

Belivermis et al (2020)

metabolomics

Belivermis et al (2020)

Emerging environmental issue

Environment Laboratories

Plastics – development of tools & research

Nuclear and isotopes techniques To complement other techniques

Behavior and fate of marine plastics

T = 6 hours

8 days after exposure

Depuration phase

scallops exposed to radiolabelled nanoplastics

Al-Sid-Cheikh et al. 2018. *Environ. Sci. Tech.*

Environment Laboratories

+ ²⁰³Hg

Radioisotopic approach: use of ²⁰³Hg

Hg accumulation in the encapsulated egg of the common cuttlefish *Sepia* officinalis

Lacoue-Labarthe et al., 2009

Radioisotopic approach: use of ²⁰³Hg

Environment Laboratories

Influence of food (ciliate and phytoplankton) in the trophic transfer of mercury (Hg and CH₃Hg) in the Pacific cupped oyster *Crassostrea gigas*

Metian et al. (2019) Env Pol

Radioisotopic approach: use of ²⁰³Hg

New development with radio - Hg

Uptake and loss of ¹⁴C-LAS in shrimp

Metian et al. (2019) Aqua Tox *linear alkylbenzene sulfonate

- Li stable isotope ratios in tissues correlate positively with water Li concentrations
- Presence of a threshold Li ratios above which mussels shift their metabolism

Thibon et al. (2021) ACS Earth and Space Chem

More info ... <u>m.metian@iaea.org</u>

Environment Laboratories