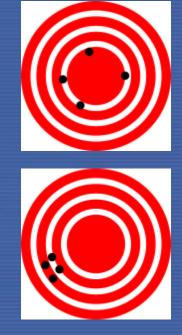
L15g Validation of urine analysis measurements

Validation of indirect internal monitoring by urine analysis can be done by:

- Calibration of the measurement instrument (using standard reference materials)
- Performance Testing
- Systematic testing using controls and by
- Laboratory intercomparison


Performance criteria

The performance criteria are recommended by ANSI N13.30-1996.

For measurements at the Minimum Testing Level:

• Accuracy – 25% to + 50%

• Precision < 40 %

• Accuracy of one measurement may be defined as bias B_i : • $B_i = (A_i - A) A$

- Where
- A_i is the value of the ith measurement
- A is the actual quantity in the test sample

Relative Bias

Use relative bias, which may be obtained at different activity levels.

Calculate from the relative bias B_{ri} as:

$$B_{r} = B_{i}^{-} = \sum_{i=1}^{n} B_{i}^{i} / N$$

- Where
- $N \ge 5$ is the number of test samples measured by the lab.

Precision

 Precision is the relative dispersion of the values of B_{ri} from its mean B_r:

$$S_{B} = \sqrt{\frac{\sum_{i=1}^{N} (B_{i} - B_{r})^{2}}{(N-1)}}$$

Minimum Testing Level (MTL)

 The MTL should preferably be five times, but may be ten times the Minimum Detectable Amount (MDA) as defined by

Where

MDA

 $\frac{4.65 \text{ sb} + 3}{1476}$

KTe

- is the standard devia • sb
- K is the calibration constant
- T is the counting time
- A is the radiological decay constant
- <u>A</u>t is the elapsed time between an establish reference date and the analysis date.

MTL examples

Measurement	Radionuclide	MTL
Category		(per liter or per sample)
BETA activity: average	³ Н	2 kBq
energy <100 keV	¹⁴ C	2 kBq
	³⁵ S	20 Bq
	²²⁸ Ra	0.9 Bq
BETA activity: average	³² P	4 Bq
energy = or >100 keV	^{89/90} Sr or ⁹⁰ Sr	4 Bq
ALPHA activity:	^{228/230} Th or ²³² Th	0.02 Bq
Isotopic analysis	^{234/235} U or ²³⁸ U	0.02 Bq
	²³⁷ Np	0.01 Bq
	²³⁸ Pu or	0.01 Bq
	^{239/240} Pu	0.01 Bq
	²⁴¹ Am	
GAMMA (photon)	¹³⁷ Cs	2 Bq
activity	⁶⁰ Co	2 Bq
	125	0.4 kBq

- Definition of standards to be used for calibration and measurement conditions (measuring time)
- Calibrate the detector system using above defined standards and record the calibration results.
- Measure a blank sample (reagent blank for UAL)
 Determine the MDA for each radionuclide of concern.

- Set the limits values for the MTL based on the criteria 5 times MDA.
- Prepare a testing sample with activity value above the MTL for each radionuclide of concern.
- Define measuring time for sample measurements.
 - Carry out minimum five repetitive measurements on these samples with repositioning the samples after each measurement and record the results.

- Calculate B_r and sb as indicated above for each measured radionuclide.
- Compare B_r and sb with the acceptance values stated in the table above.
- If the calculated values meet the performance criteria the method is accepted as validated.
- Prepare a report on the performed measurements, results, acceptance values and outcome of the validation process for documentation.

System calibration

- The calibration source contains the following isotopes:
- The control source contains the following spike isotopes:

• ²³⁴ U	4.8 MeV	• ²³⁷ Np	4.8 MeV
• ²³⁹ Pu	5.2 MeV	• ²⁴³ Am	5.3 MeV
• ²⁴¹ Am	5.5 MeV	• ²⁴⁴ Cm	5.8 MeV

System calibration control

Nuclide	A _{ai} [kBq]	A _i [kBq]	B _{ri}	Br	S _B	
		9.97E -01	-3.32E -03			
		9.92E -01	-8.19E -03			
²⁴¹ Am	²⁴¹ Am 1	9.90E -01	-1.05E -02	-1.05E -02 -0.01		
		9.79E -01	-2.12E -02			
		1.02E+00	1.55E -02			
		1.09E+00	8.93E -02			
	²⁴⁴ Cm 1	1.09E+00	9.31E -02			
²⁴⁴ Cm		1.07E+00	6.61E -02	0.09	0.012	
		1.09E+00	8.97E -02			
		1.10E+00	1.10E+00 9.86E -02			
	²³⁹ Pu 1	1.23E+00	2.27E -01	0.22 0		
		1.22E+00			2.23E -01	
²³⁹ Pu		1.22E+00	2.16E -01		0.009	
		1.21 E+00	2.12E -01			
		1.23E+00	2.33E -01			

System control with spike sample

Nuclide	A _{ai} [Bq]	А і [Bq]	B _{ri}	Br	SB
	0.0334	0.0319	-0.04	-0.10	0.05
Np -237	0.0335	0.0314	-0.06		
	0.0336	0.0280	-0.17		
	0.0333	0.0291	-0.13		
	0.0333	0.0302	-0.09		
	0.0304	0.0294	-0.03	0.01	
Am -243	0.0303	0.0316	0.04		0.04
	0.0305	0.0298	-0.02		
	0.0305	0.0304	-0.003		
	0.0304	0.0323	0.06		
Cm -244	0.0294	0.0215	-0.27	-0.22 0.	0.06
	0.0293	0.0 234	-0.20		
	0.0294	0.0209	-0.29		
	0.0293	0.0238	-0.19		
	0.0292	0.0250	-0.15		

Example of validation data

MDA = minimum detectable amount

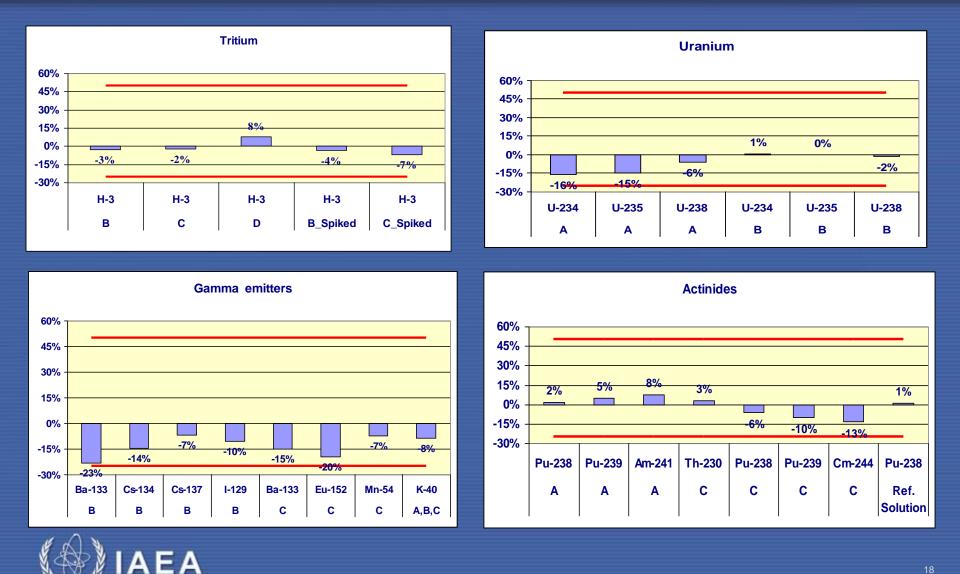
MTL = minimum testing level

Nuclide	Energy [keV]	MDA [Bq]	MTL [Bq]
TH-228	5423	2.77E-04	1.39E-03
TH-229	4845	2.88E-04	1.44E-03
TH-230	4688	2.36E-04	1.18E-03
TH-232	4010	2.36E-04	1.18E-03
U-232	5320	2.39E-04	1.19E-03
U-233	4825	2.40E-04	1.20E-03
U-234	4776	2.38E-04	1.19E-03
U-235	4395	2.79E-04	1.39E-03
PU-236	5768	1.93E-04	9.64E-04
NP-237	4788	3.02E-04	1.51E-03
PU-238	5499	2.47E-04	1.24E-03
U-238	4196	5.81E-05	2.91E-04
PU-239	5156	6.03E-05	3.01E-04
PU-240	5168	6.03E-05	3.02E-04
AM-241	5486	2.63E-04	1.32E-03
PU-242	4901	2.47E-04	1.24E-03
AM-243	5277	2.63E-04	1.32E-03
CM-244	5805	2.29E-04	1.14E-03

Validation by intercomparison

• Regular intercomparisons each year organized by:

PROCORAD samples


Typically samples are supplied for

- > Tritium (H3)
- ActinidesCm244)
- Uranium
- Gamma-emitters

- (Pu238, Pu239, Am241, Th230,
- (U234, U235, U238)
 - (Ba133, Cs134, Cs137, I129, Eu152, Mn54, K40)
- Surprise sample with unknown isotope composition.

Intercomparison results

