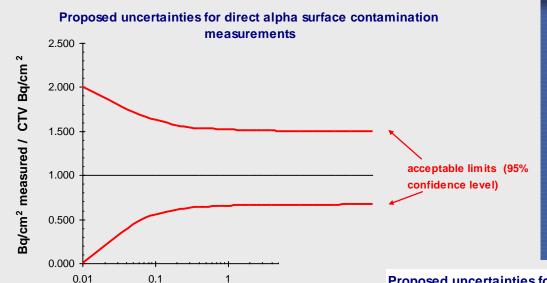
L15d Validation of workplace monitoring

Surface contamination measurements with portable devices

Validation planning

- Define detection limits
- State acceptable uncertainties
- Setup working conditions for validation
- Perform measurements
- Estimate uncertainty budget

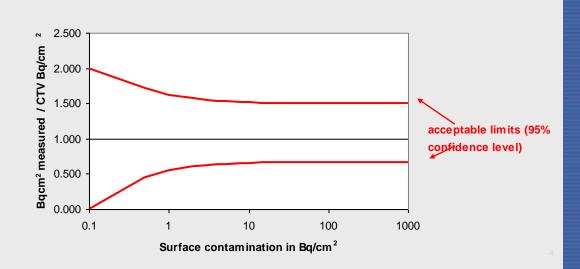

Detection limits

For release of items from controlled to uncontrolled areas, the limits for surface contamination are:

- >0.1 Bq/cm² for α-emitters
- \geq 1.0 Bq/cm² for β -emitters

Acceptable uncertainty

Proposal


+ 50% and – 30% at ten times the detection limit

Proposed uncertainties for direct beta surface contamination measurements

±100% near the detection limit

Surface contamination in I

Preparation for validation


- a) Prepare a 20 cm x 20 cm area sample of workbench, flooring material or other material such as a tray;
- b)Prepare a solution containing approximately 1600 Bq of Sr-90;
- c) Prepare a solution of approximately 160 Bq of Am-241;
- d)Cover the 400 cm² of material more or less evenly with the two above mentioned solutions;

Validation measurements

- Measure and record the surface contamination with different monitors used by different technicians;
- Make a wipe of the abovementioned surface;
- g) Count the wipe-test sample for alpha and beta emitters and record the result.
- b) Dispose of the contaminated surface to the active waste.

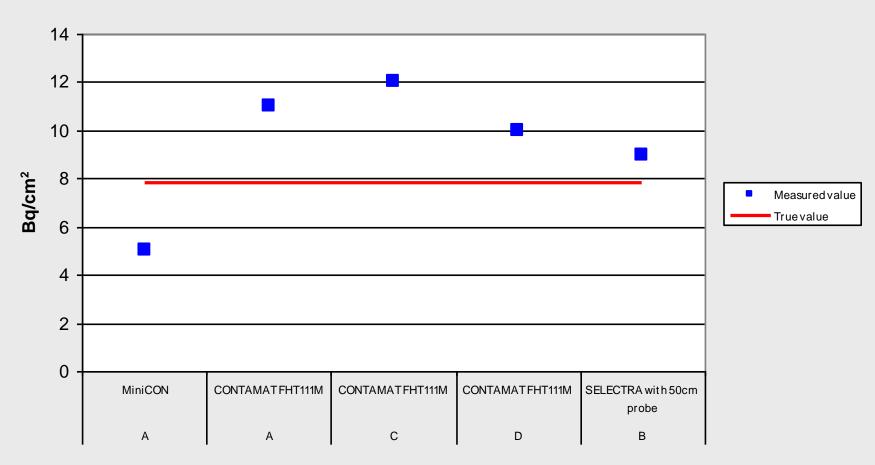
Measurement α-emitter

Validation of surface contamination measurements - Am-241 1.2 8.0 Bq/cm² Measured value 0.6 True value 0.4 0.2 0 SELECTRA with PAM3 MiniCON CONTAMAT PAM3 PAM3 CONTAMAT FHT111M FHT111M 50cm probe

С

D

D


В

Α

Measurement β-emitter

Validation of surface contamination measurements for Sr-90

Measurement uncertainty

Influencing factors can be:

- Background reading
- Instrument reading instability
- Analogue instruments parallax and scale resolution
- Uniformity of surface contamination
- Detector-source positioning factor
- Calibration factor uncertainties
- Energy dependence
- External electromagnetic fields
- Environmental factors

Uncertainty estimation α-emitters

Alpha emitters							
Quantity	(i)	Uncertainty	Probability	Divisor	c(i)/y	u(i)	u(l)^2
		dx(i) %	distribution			%	
Background measurement	1	30	normal	1	0.02	0.60	0.36
Scale reading	2	5	rectangular	1.73	1	2.89	8.35
Parallax	3	5	rectangular	1.73	1	2.89	8.35
Contamination uniformity	4	20	normal	1	1	20.00	400.00
Detector-source distance	5	20	rectangular	1.73	1	11.56	133.65
Electromagnetic fields	6	NA	-	-	-	-	-
Environmental factors	7	10	rectangular	1.73	1	5.78	33.41
Calibration factor	8	3	normal	1	1	3.00	9.00
				Combined	24.35		
				Expanded	48.69		

Uncertainty estimation β-emitters

Beta emitters							
Quantity	(i)	Uncertainty dx(i) %	Probability distribution	Divisor	c(i)/y	u(i) %	u(l)^2
Background measurement	1	30	normal	1	0.02	0.60	0.36
Scale reading	2	5	rectangular	1.73	1	2.89	8.35
Parallax	3	5	rectangular	1.73	1	2.89	8.35
Contamination uniformity	4	20	normal	1	1	20.00	400.00
Detector-source distance	5	6	rectangular	1.73	1	3.47	12.03
Energy dependence (beta)	6	20	rectangular	1.73	1	11.56	133.65
Electromagnetic fields	7	NA	-	-	-	-	-
Environmental factors	8	10	rectangular	1.73	1	5.78	33.41
Calibration factor	9	3	normal	1	1	3.00	9.00
	Combined standard uncertainty %						24.59

Expanded uncertainty (k=2) %

49.19

Validation statement

After evaluation of the α and β validation
measurements and the uncertainty budget estimation,
it can be said that surface contamination rate
measurements may be made with an uncertainty of

49% (k = 2 for a 95% confidence limit).

