L15c Validation of workplace monitoring

Dose rate measurements with handheld instruments

Objectives

 In this lecture we will discuss a method to validate the measurement method of monitoring dose rate measurements with handheld instruments in a workplace.

The measurement challenges

 Very often radiation sources of unknown energy, with unknown attenuation, from different directions resulting in a complex radiation field.

Measurement results will often govern the time persons may work in this workplace.

Validation plan

lower level of 5µSv/h Target value: 20 keV - 1.4 MeV Energy range to be defined (Trumpet curve) Uncertainty Temperature to be measured and recorded Humidity to be measured and recorded Air pressure to be measured and recorded Monitoring instruments checked and operational Measurement personnel trained

Pre validation information

Energy dependence

Pre validation information

Dose rate dependence

Functional test

- Select an area with a low, stable background.
- Check calibration (not older than one year).
- Place test source in a reproducible geometry.
- Meter response shall not differ by more than ± 20% from the reference reading.

Source setup

- A gamma field was produced using a Buchler γ- calibrator OB 34/1 loaded with a 740 MBq Ci
 ¹³⁷Cs panoramic source.
- A place was marked on the floor of the bunker at a distance of 3 m from the source where the dose rate H*(10) was 5.7 µSv/h.

Measurement

Measurement performed according to the usual routine, with standard equipment and by all of the technicians.

Technician	Equipment used	Dose rate µSv/h	Dose-rate /5.7 µSv/h
A	Radigem	6.4	1.12
В	Mini-rad	7.0	1.22
С	FH-40	4.4	0.77
В	Bicron	6.0	1.05
В	FH-40	5.0	0.87
с	Radigem	6.6	1.15
^	SSW-1	6.0	1 05
~		0.0	1.05
A	Ram-ion	5.0	0.87
С	Mini-rad	7.0	1.22
C	Ram-ion	5.0	0.87

Acceptance limits

- The response, H_{pm}/H_{pw}, of the dosimeters must meet the following criteria (RS-G-1.3):
- For pure photon radiation

$$\frac{1}{1,5} \left(1 - \frac{2H_{p0}}{H_{p0} + H_{pw}} \right) \le \frac{H_{pm}}{H_{pw}} \le 1,5 \left(1 + \frac{H_{p0}}{2H_{p0} + H_{pw}} \right)$$

- H_{pm} value measured by the participant,
- H_{pw} conventional true value stated by the irradiating laboratory,
 - H_{p0} lower limit of dose range

Apply acceptance limits

Dose rate measurement validation

Validation statement

 The results show that the technicians and the available dose rate measuring instruments are able to measure the dose rate in the photon field with uncertainties within the acceptable limits.

