

Occupational Radiation Protection during High Exposure Operations

Sources of High Exposure Operations

Contents

- Nuclear accident sources
- Radiological accident
- Transport accident sources

 Accident scenario (LWR – TMI or Fukushima): Reactor decay heat is not removed Release from the core to the containment Release from the containment to the environment

Chernobyl (RKBM): Direct release of fuel to the environment including volatile product and non-volatile fission products and fuel particles

Radionuclides

 Longer lived radionuclides built up in the fuel with operation (for example, Cs which is volatile at high temperature)

 Short lived – Quick decay after shut down (volatile I, Te, most of noble gases)

Release from the core to the containment volatiles and non-volatiles (NUREG – 1465)

Noble gases:	100 %	Xe, Kr
Halogens:	40 % I	, Br Note: Iodine - 95 % in particulate,
	4.8	5% elementary and 0.15 % in organic form
Alkali metals:	30 %	Cs, Rb
Tellurium group:	5 %	Te, Sb, Se
Barium, Strontium	: 2 %	Ba, Sr
Noble metals:	0.25 %	Ru, Rh, Pd, Mo, Tc, Co
Lanthanides:	0.02 %	La, Zr, Nd, Eu, Nb, Pm, Pr, Sm, Y, Cm, Am
Cérium group:	0.05 %	Ce, Pu, Np

(Accident Source Terms...., NRC, 1995)

Radiological accidents

Uncontrolled dangerous source

- The categorization system is based on the concept of "dangerous sources" which are quantified in terms of "D values" (see RS-G-1.9."Categorisation of Radioactive Sources)
- The D value is the radionuclide specific activity of a source which, if not under control, could cause severe deterministic effects for a range of scenarios that include both external exposure from an unshielded source and internal exposure following dispersion of the source material.
- The D₁-value is the activity of radionuclide in a source that, if <u>uncontrolled but not dispersed</u>, might result in an emergency that could cause severe deterministic health effects by external exposure
- The D₂-value is the activity of radionuclide in a source that, if <u>uncontrolled and dispersed</u>, might result in an emergency that could cause severe deterministic health effects by internal and external exposure
- The D-value is the lowest-value of the D_1 and D_2 -values for a radionuclide

Minimal values of activity which can induce deterministic effects (D₁-, D₂-, D-values)

Radionuclide	D ₁ -value [TBq]	D ₂ -value [TBq}	D-value [TBq]
³ Н	Not	2000	2000
³² P	10	20	10
⁶⁰ Co	0.03	30	0.03
⁹⁰ Sr	4	1	1
131]	0.2	0.2	0.2
¹³⁷ Cs	0.1	20	0.1
¹⁹² lr	0.08	20	0.08
²¹⁰ Po	8000	0.06	0.06
Natural U	Not	Not	Not
²³⁵ U (enriched <10%)	0.0008	0.0008	0.0008
²³⁸ Pu	300	0.06	0.06
²³⁹ Pu	1	0.06	0.06
²⁴¹ Am	8	0.06	0.06
²⁵² Cf	0.02	0.1	0.02
²³⁹ Pu- ⁹ Be	1	0.06	0.06
²⁴¹ Am- ⁹ Be	1	0.06	0.06

Uncontrolled dangerous source

The IAEA has established 5 dangerous categories of sources corresponding to ratio activity of source to D-value, A/D:

- $A/D \ge 1000$ Extremely dangerous to the person
- II $1000 > A/D \ge 10$ Very dangerous to the person
- III $10 > A/D \ge 1$ Dangerous to the person
- IV $1 > A/D \ge 0.01$ Unlikely to be dangerous to the person
- V 0.01 > A/D

Most unlikely to be dangerous to the person

Dangerous category of sources	Activity ratio A/D	Source	Typical radionuclide
I	A/D ≥ 1000	Radioisotope Thermoelectric Generator - RTGs Irradiators, Tele-theraphy Gamma-knife	⁹⁰ Sr, ²³⁸ Pu, ⁶⁰ Co, ¹³⁷ Cs

Radioisotope Thermoelectric Generator - RTGs

Irradiator s

Teletherapy

Gammaknife

Dangerous category of sources	Activity ratio A/D	Source	Typical radionuclide
II	1000 > A/D ≥ 10	Industrial gamma Radiography H/M dose rate brachytherapy	⁶⁰ Co, ⁷⁵ Se, ¹⁹² Ir, ¹⁶⁹ Yb, ¹³⁷ Cs

Industrial gamma Radiography

H/M dose rate brachytherapy

Dangerous category of sources	Activity ratio A/D	Source	Typical radionuclide
Ш	10 > A/D ≥ 1	Fixed industrial gauges that incorporate high activity sources Well logging gauges	⁶⁰ Co, ¹³⁷ Cs, ²⁵² Cf, ²⁴¹ Am-Be

Fixed industrial gauges

Well logging gauges

Dangerous category of sources	Activity ratio A/D	Source	Typical radionuclide
IV	1 > A/D ≥ 0.01	Low dose rate brachytherapy TL gauges; Portable gauges Bone densitometers; Static eliminators	 ²²⁶Ra, ²⁵²Cf, ¹²⁵I, ¹³⁷Cs, ¹⁹²Ir, ¹⁹⁸Au, ¹⁴¹Pm, ²⁴⁴Cm, ⁸⁵Kr, ⁹⁰Sr, ²⁴¹Am, ²⁵²Cf, ²²⁶Ra, ²⁴¹Am-Be, ¹⁰⁹Cd, ¹⁵³Gd, ²¹⁰Po
			Southern State
Low dose rate brachytherapy	Portable gauges	Bone densitometers	; Static eliminators

Dangerous category of sources	Activity ratio A/D	Source	Typical radionuclide
V	0.01 > A/D and A > Except	Low dose rate brachytherapy-eye, X ray fluorescence devices Electron capture devices Mossbauer spectrometry PET	⁹⁰ Sr, ¹⁰⁶ Ru-Rh, ¹⁰³ Pd, ⁵⁵ Fe, ¹⁰⁹ Cd, ⁵⁷ Co, ⁶³ Ni, ³ H, ⁵⁷ Co, ⁶⁸ Ge

Low dose rate brachytherapy

X ray fluorescence devices

Electron capture devices

Misuse of industrial and medical dangerous source

- In radiological accidents caused by the misuse of industrial/medical dangerous sources, the most important pathways of exposure for the victims are external exposure and inadvertent ingestion.
 - However for the emergency workers, the most important pathways are external exposure and internal contamination.

- Members of searching team should be supplied by
 - o individual dose monitors,
 - o protective clothes,
 - o radiation measuring devices with wide range of dose rates,
 - o remote control handling equipment and
 - shielded container.

Uncontrolled dangerous source

- For radiological emergencies, an airborne release of radioactive material is of concern primarily if a dispersible dangerous source is contained in a fire or explosion.
- The distance at which such a release is hazardous depends on many factors such as the size of the source, the amount of material dispersed into the air, its dilution, the movement of the plume and the size and nature of the particles.
- These factor should also be taking into account during an emergency.
- For airborne release from facilities the significant pathways of exposure for personnel are mainly:
 - ✓ External gamma radiation from radioactive material deposited on the ground, called ground shine
 - ✓ Inhalation of radioactive material contained in the plume
 - ✓ Deposition of radioactive material on the skin

Uncontrolled dangerous source

 Radiation monitoring is carried out during emergency actions on site and on zones boundaries:

- $\circ\,$ with the aim of preventing transfer of radionuclide,
- o retrospective estimation of applied measures and
- prospective estimation of occupational doses for planned measures.
- Radiation monitoring is intended for
 - o assessment of individual and collective doses,
 - $\circ\,$ efficiency of emergency response and
 - identification of involved persons needed in medical treatment or follow up.

Transport accident of dangerous source

Two typical situations can occur during transportation:

1)The movement of all radioactive materials according to standards of regulatory, administrative, safety and engineering controls

2)Either deliberate or inadvertent movements of radioactive materials outside of the regulatory and legal framework

- Regulations require that exposure from handling, storage and transport of radioactive material shall be kept as low as reasonably achievable taking into account social and economic factors.
- Also past events and their analysis should be useful for typical source considerations.

Adoption of the INES scale for transport events

Level of INES scale	INES-2008 edition	INES for transport event
7	Major accident	Major accident
6	Serious accident	Severe accident
5	Accident with wider consequences	Accident with significant radiological consequences
4	Accident with local consequences	Accident with appreciable radiological consequences
3	Serious incident	Accident with limited radiological consequences
2	Incident	Incident with complications, affecting safety functions but no release
1	Anomaly	Incident resulting in some disruption of normal transport, without affecting safety functions
0	Below scale	Non-incident (e.g. false alarm)

Transport accident of dangerous source

 When a radiation hazard is suspected or known, it is essential that an inner cordon be established around the radioactive source and all persons be evacuated from within the inner cordon control area.

 The inner cordon should be set up at a distance where the external dose rate level does not exceed 0.1 mSv/h.

 Airborne radioactivity should be measured or estimated in order to set up the area of inner cordon control.

Transport accident of dangerous source

- If the first responder encounters any of the following conditions, the scene is likely to require prompt radiological evaluation to assess the magnitude of the radiation hazards:
 - Radiation level greater than 0.1 mSv/h at distance of 1 m from a surface or object
 - The confirmed detection of neutron radiation that is not from a legal shipment of radioactive materials
 - Contamination indicated by loose, spilled or leaking radioactive materials
- The first responder should establish the location of the radioactive material.
- The next step is to identify the radioactive material.
- The topography of the scene is a critical factor in the determination of the most effective means of seizing the radioactive materials and bringing them under control.