Paratransgenesis as a tool to block trypanosome transmission by tsetse.

Jan Van Den Abbeele

THIRD FAO/IAEA INTERNATIONAL CONFERENCE ON AREA-WIDE MANAGEMENT OF INSECT PESTS:
INTEGRATING THE STERILE INSECT AND RELATED NUCLEAR AND OTHER TECHNIQUES
VIENNA, 22 - 26 MAY 2017

Outline of the presentation

- Background on tsetse-transmitted trypanosomiases and its control
- Potential role of paratransgenic refractory tsetse flies within SIT programs
- Paratransgenesis in tsetse fly: proof-of-concept; current bottlenecks

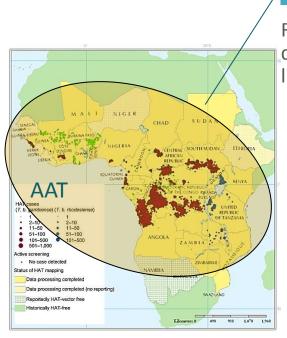
Tsetse-transmitted African trypanosomiasis

- Parasitic disease(s) caused by Trypanosoma sp. (protozoa, kinetoplastidae) in different host species (man, bovine, goat,...).
- Distribution: sub-Saharan Africa

Tsetse fly (*Glossina* sp.)

Trypanosoma sp.

HAT; sleeping sickness <u>T.brucei gambiense</u>; T.brucei rhodesiense


AAT; nagana *T.congolense; T.vivax; T.brucei brucei*

Tsetse-transmitted African trypanosomiasis

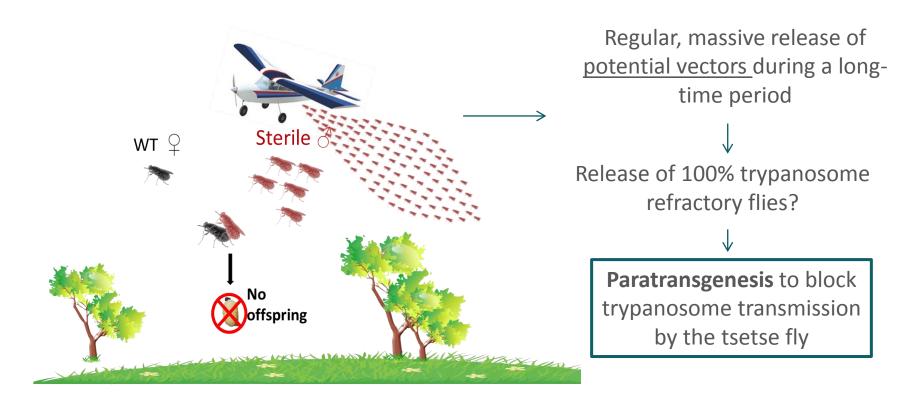
- HAT (in 2015)
 - DRC: 2.351 new cases (>85%);
 - CAR: 146;
 - 100 cases in surrounding countries
 - → remote, rural areas
 - > 60 million people are still at risk

WHO: → elimination by 2025? e.g. TRYP-ELIM program in DRC (ITM, PNLTHA, LSTM – B&M funding)

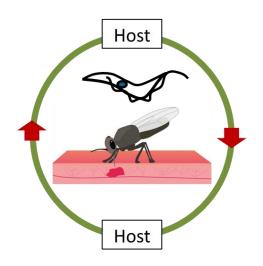
AAT

Remains one of the biggest infectious disease constraints to productive livestock rearing in sub-Saharan Africa:

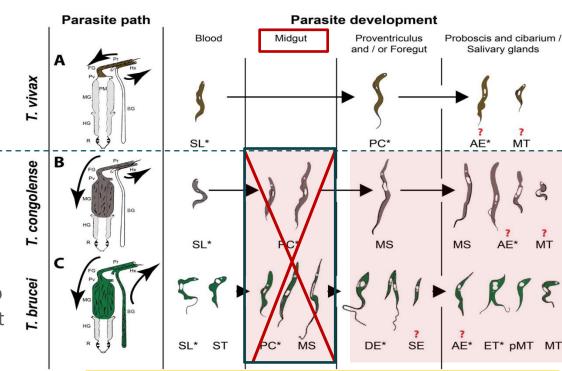
- cattle breeding (increase of mortality and morbidity)
- reduction of meat / milk production: lower income, reduction of nutritional proteins
- losses in animal traction power: reduction of the yields and the surface area that can be cultivated; restricted land usage


Tsetse-transmitted African trypanosomiasis: control

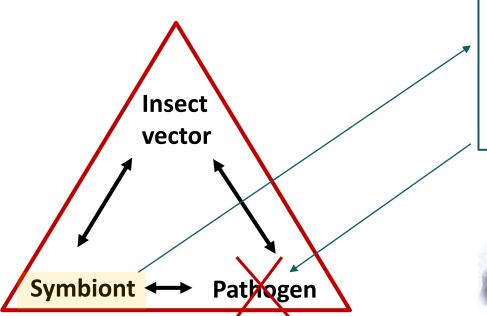
- HAT:
 - Active case detection
 - Accurate and rapid diagnosis; stage determination
 - Treatment: limited amount of drugs available; drug resistance?
 - Tsetse fly control: tiny targets

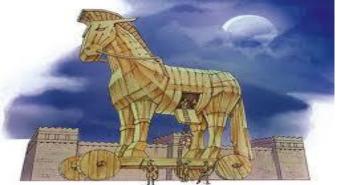

- AAT:
 - Diagnosis by the local vet/farmer,...
 - **Treatment**: two main drugs: isometamidum chloride, diminazene aceturate; homidium; important issues: quality of the drugs on the local market; drug resistance.
 - Trypanotolerant cattle
 - Tsetse fly control:
 - use of insecticides: impregnated screens/targets; selective application on animals; sequential aerosol technique – SAT;...
 - **Sterile Insect Technique (SIT)**

Tsetse-transmitted African trypanosomiasis: SIT

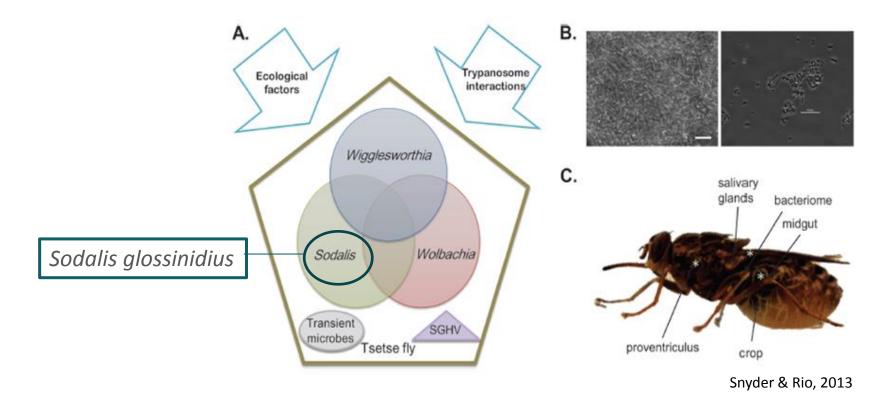


Trypanosome transmission by the tsetse fly


Biological transmission: obligatory developmental cycle in tsetse; simple to complex cfr. *Trypanosoma* species; most of tsetse flies are refractory for trypanosomes

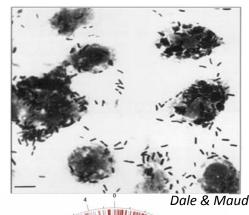

→ Can we achieve this through paratransgenesis?

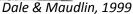
Paratransgenesis

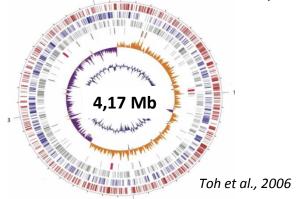

Trojan horse concept: Genetically modified symbiotic microorganism as an *in situ* delivery system for effector molecules that target the insect-pathogen interplay (paratransgenesis)

Paratransgenesis

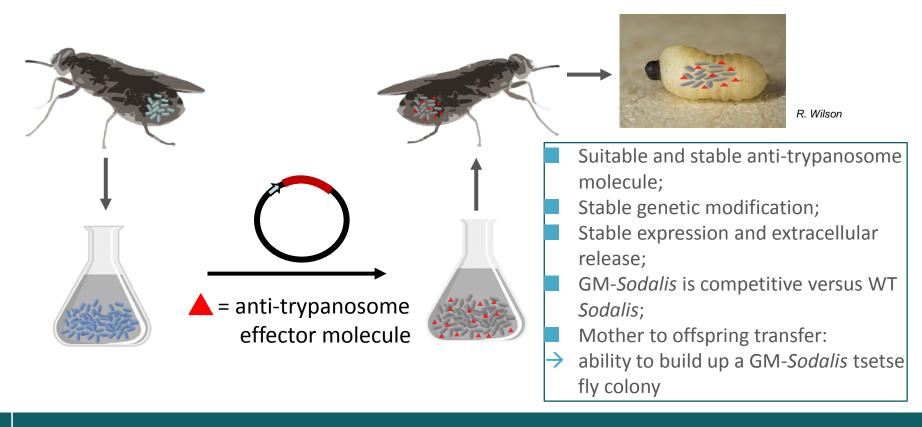
- In order to perform paratransgenesis, there are several requirements:
 - The commensal microorganism (e.g. bacteria) can be grown in vitro easily.
 - It can be genetically modified, such as through transformation with a plasmid containing the expression construct/desired gene or by genomic integration.
 - The engineered microorganism is stable and safe.
 - There is a tight and unique association between vector and symbiont
 - Field delivery is possible and easily handled.

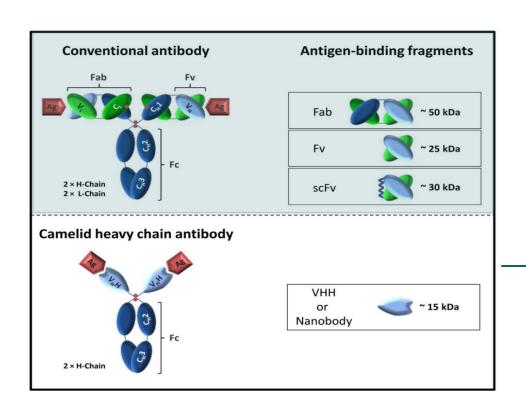

Tsetse candidate microorganisms: microbiome





Facultative commensal: Sodalis glossinidius


- Fam. Enterobacteriaceae;
- Role in tsetse not clear; present in all lab colonies; prevalence in natural populations is highly variable: 0-70%;
- Vertical transmission to subsequent generations: mother \rightarrow offspring through the intrauterine nourishment of the larva;
- Present in the midgut, hemolymph, salivary glands, milk glands; intra- and extracellular;
- Genome: 4.17Mb; 2,432 protein coding sequences; reduced coding capacity of 51%; 972 pseudogenes;
- Availability of an *in vitro* culture system and methodologies for genetical modification;
- → suitable candidate 'vehicle' for paratransgenesis



Tsetse – *Sodalis*: paratransgenesis

Anti-trypanosome molecule: Nanobodies (Nb)

Nanobody:

- Single-domain antigen-binding fragments derived from camel heavy-chain antibodies
- Selection through phage display and panning
- Unique epitope repertoire targeting

Advantages:

- Small size (~15 kDa)
- High solubility/stability
- Easy to express; high production yields in E. coli
- Nanobodies can be modified: binding affinity; protease resistance,...

Sodalis expression and extracellular release of functional Nb in the tsetse fly

De Vooght et al. Microbial Cell Factories 2012, 11:23 http://www.microbial.cellfactories.com/content/11/1/2

De Vooght et al. Microbial Cell Factories 2014, 13:156 http://www.microbialcellfactories.com/content/13/1/156

Medium

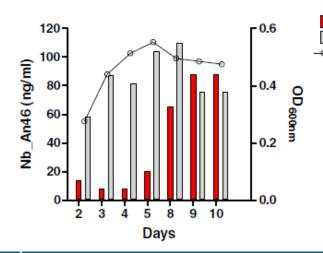
Lysate

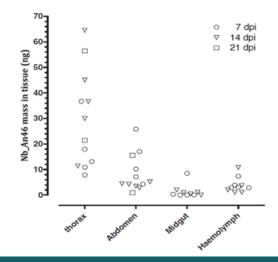
Open Access

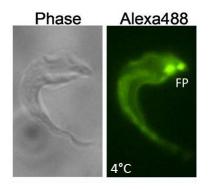
RESEARCH Open Access

Expression and extracellular release of a functional anti-trypanosome Nanobody[®] in *Sodalis glossinidius*, a bacterial symbiont of the tsetse fly

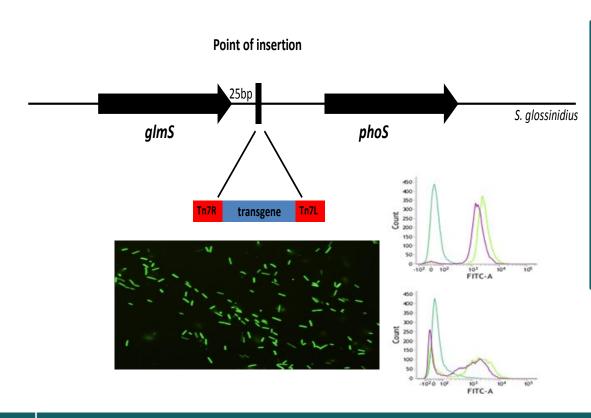
Linda De Vooght^{1,2}, Guy Caljon^{2,3,4}, Benoît Stijlemans^{3,4}, Patrick De Baetselier^{3,4}, Marc Coosemans¹ and Jan Van Dan Abbaele^{2,4}

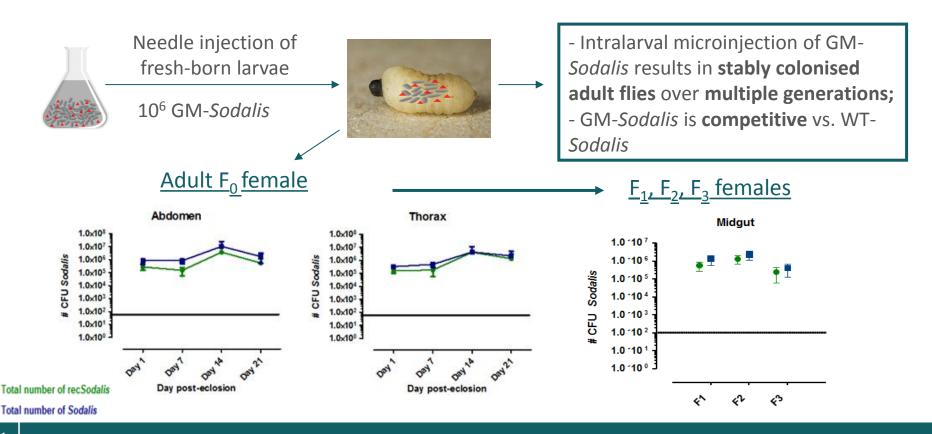

RESEARCH


Delivery of a functional anti-trypanosome

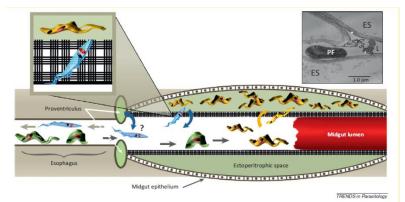

Nanobody in different tsetse fly tissues via a bacterial symbiont, Sodalis glossinidius

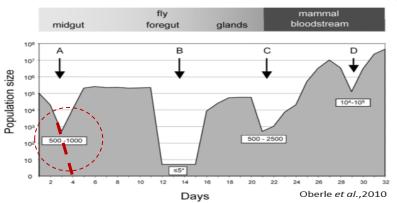
Linda De Vooght^{1*}, Guy Caljon^{1,2,3}, Karin De Ridder¹ and Jan Van Den Abbeele^{1,4*}

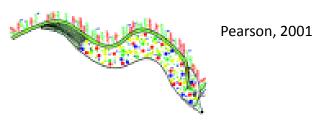

Stable expression of functional Nb at the 'ng' level; midgut < level (ELISA problem; midgut proteases)


Stable integration in *Sodalis* genome

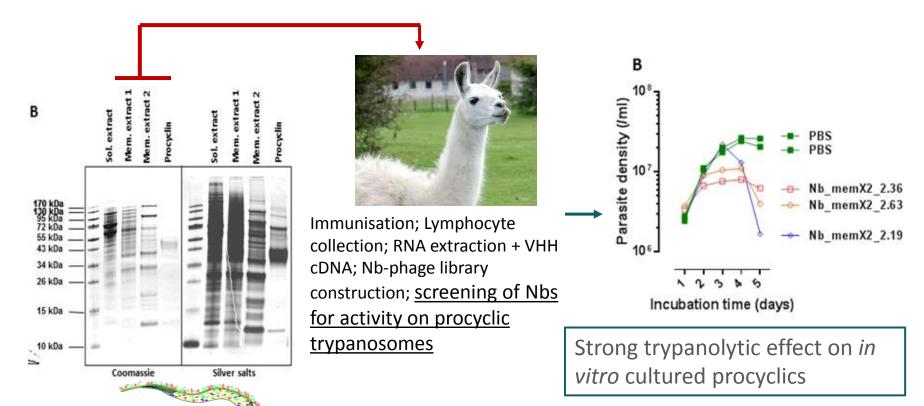
Transposon-based system (Tn7) for the site-specific insertion of Nb genes into the chromosome of *Sodalis:*


→ Stable expression of the Nb in the tsetse fly


Mother to offspring transfer of GM-Sodalis



Blocking trypanosome development in the tsetse midgut?


T.brucei

Procyclic stage surface:

- GPEET-procyclin
- EP-procyclin
- Other membranebound components?
- Anti-procyclic nanobodies

Selection of anti-procyclic Nbs

GM-Sodalis/anti-procyclic Nbs in the T.brucei infected tsetse

But: in vivo in the tsetse fly

Sodalis strain	Infected/total # flies	
	Midgut	Salivary gland
WT Sodalis	17/50	7/17
Sodalis:Nb88	27/53	11/27
Sodalis:Nb63	19/53	9/19
Sodalis:Nb36	21/45	10/21
Sodalis:Nb19	29/43 **	14/29

Enhancement of trypanosome midgut establishment!?

Conclusions

- Sodalis is highly suitable for tsetse paratrangenesis;
- Stable genomic integration; expression and release of functional effector molecule in the tsetse fly;
- Efficient transfer to offspring /subsequent generations → possibility to build a tsetse colony with GM-Sodalis;
- CURRENT BOTTLENECKs:
 - highly potent and stable trypanocidal peptide/protein that blocks trypanosome midgut development?; ideally targeting both *T. brucei sp.* and *T. congolense*.
 - Impact of irradiation (sterile males/SIT) on the GM-Sodalis?

Acknowledgments

Linda De Vooght (postdoc): all *Sodalis* & tsetse - related work

Guy Caljon (postdoc): Nb-work

Karin De Ridder (lab technician) Mol.biol work

Jos Van Hees (lab technician) tsetse fly rearing

Vrije Universiteit Brussel

- P. De Baetselier
- B. Stijlemans
- S. Magez
- S. Hussain

on "Improving SIT for tsetse flies through research on their symbionts and pathogens":

A. Abdalla, A. Parker, P. Takac

