

Status of work to implement ICP-MS for analysis of excreta and to update the technical basis for internal dosimetry

P. Kenny¹, R. Alonso Vazquez¹, A. Capote-Cuellar¹, M. Hajek¹, S. Kinase^{1,2} & D. Tucker¹

¹ Division of Radiation, Transport and Waste Safety, International Atomic Energy Agency, Vienna International Centre, PO Box 100, 1400 Vienna, Austria

² Nuclear Science Research Institute, Japan Atomic Energy Agency, Tōkai, Ibaraki 319-1195, Japan

IAEA Webinar: Tips and Tricks for the Practice of Internal Dosimetry in Occupational Radiation Protection 2020 October 8

Radiation Safety Technical Services Laboratory

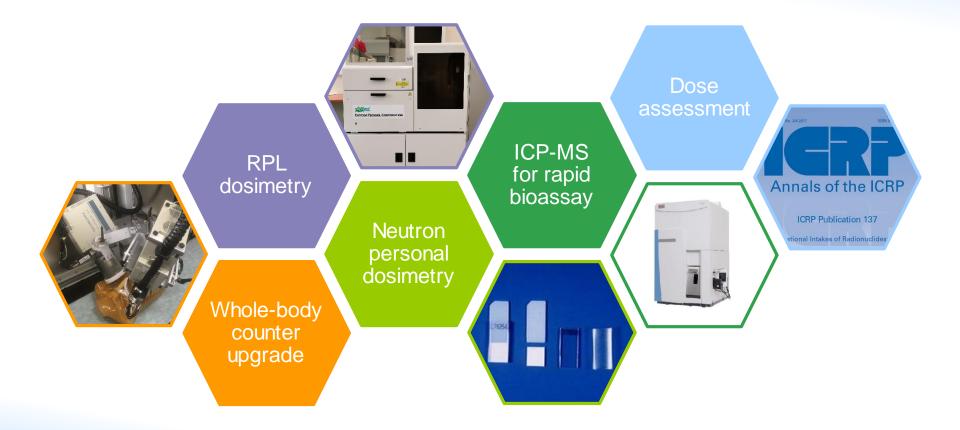
- External and internal individual monitoring for all operations under IAEA control or supervision around the globe
 - 3000 monitored individuals, 45000 assessments per year
 - Bound to IAEA Radiation Safety and Nuclear Security Regulations implementing requirements of International Basic Safety Standards

Internal Dosimetry

- Largest cohort of occupationally exposed workers monitored at regular intervals is from Safeguards
 - Nuclear safeguards inspectors
 - Staff in Nuclear Materials Laboratory

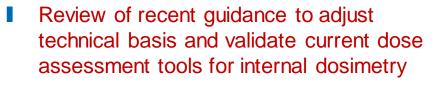
Potential exposures to U, Pu, Am, Np, Cm and Th

- Mixture of ²³⁸Pu, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu, ²⁴²Pu and ²⁴¹Am
- Confirmatory and routine monitoring for possible intakes
- Special monitoring in case of suspected accidental intake


EN ISO/IEC 17025:2017 accreditation

- In-vitro radiobioassay (urine, faeces and saliva; 9000 measurements per year)
- In-vivo radiobioassay (whole-body counting; 2700 measurements per year)

RADSED Major Capital Investment Project



Enhancing Radiation Safety through Efficient and Modern Dosimetry

Updated Technical Basis for Dose Assessment and Optimized Internal Monitoring

- ICRP Occupational Intakes of Radionuclides (OIR) series
- EURADOS TECHREC (EC Radiation Protection No. 188)
- ISO 27048:2011
- Development of Dosimetric Data Generator
- Update of work procedures for confirmatory, routine and special monitoring
- Technical recommendations on specification of recording levels for internal monitoring to standardize handling of results

Thermo Scientific[™] iCAP TQ ICP-MS

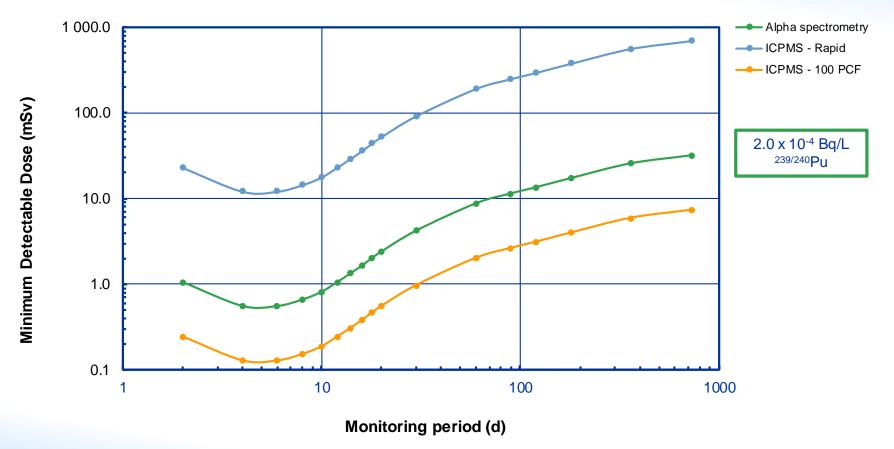
ICP-MS purchased

- Reduce turn-around time
- Improve detection limits

Triple quadrupole ICP-MS

- Q1: 4 MHz, 2-240 u
- Q2: CRC (H₂/He/O₂/NH₃ and 13 other gases)
- Q3: 2 MHz, 2-290 u
- SQ mode not using CRC
- TQ on mass mode
- TQ on mass shift mode

SC-2 DX autosampler (ESI)


We are very grateful for financial support provided by the USA!

IAEA Webinar: Tips and Tricks for the Practice of Internal Dosimetry in Occupational Radiation Protection

Why ICP-MS? Consider Time and Minimum Detectable Dose

Minimum Detectable Dose (MDD) for typical Nuclear Materials Laboratory source term. Most restrictive in urine, assuming that intake occurred at mid-point of monitoring period.

Anticipated Next Actions

Buy standard solutions

- 241 Am
- ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu
- Others?

Note: Laboratory has ²⁴²Pu, ²³²U, ²⁴³Am, ²⁴⁴Cm, ²³⁷Np and ²²⁹Th

Sample introduction system

 Identify suitable sample introduction system (e.g. APEX Q/Ω)

Collision/reaction Cell

- Currently only He
- Configure for CO₂ and NH₃

- Testing with ^{239/242}Pu standard solutions
 - Determine DLs with and without ²³⁸U
- Add and configure sample introduction system
- Test and optimise collision/reaction cell for CO_2 and NH_3 using Pu and U standard solutions
 - Optimise flow rate for most effective reaction
- Test for Pu in urine with routine method(s)
 - All nuclides
 - Separated elements

Develop and test rapid method

We are very grateful for implementation support being provided by Health Canada

IAEA Webinar: Tips and Tricks for the Practice of Internal Dosimetry in Occupational Radiation Protection

What does it take?

ICP-MS + Nebulizer and equipment + Standards

Method development and optimization, method validation, procedure writing, training

Data management software changes, increased scope of accreditation, ongoing intercomparison participation

Other things that we have forgotten?

~ 1.5 person year (expert resources)

~€250K

We'll let you know

IN