

CONCERT-European Joint Programme for the Integration of Radiation Protection Research

The PODIUM project (2018-2019):

Personal Online DosImetry Using computational Methods

Mercè Ginjaume

Universitat Politècnica de Catalunya (UPC)

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

entre de Recerca en Enginyeria Biomèdica

UNIVERSITAT POLITÈCNICA DE CATALUNY BARCELONATECH

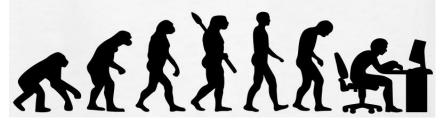
Institut de Tècniques Energètiques

7 partners: <u>SCK•CEN (Belgium)</u>, UPC (Spain), HMGU (Germany), LU (Sweden), PHE (UK), EEAE (Greece), SJH (Ireland)

Some of the slides have been adapted from other PODIUM partners' presentations.

Outline

- Motivation
- Change of paradigm
- Goal of PODIUM
- Background
- Main achievements
- Conclusions and further work



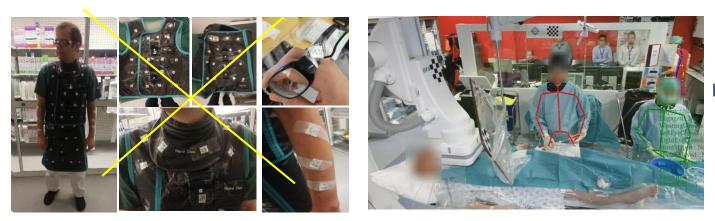
Motivation of PODIUM project Pitfalls in personal dosimetry

- Workers don't like to wear dosemeters.
- Workers especially don't like to wear more than one dosemeter:
 - passive whole body; extremity and eye lens dosemeter
 - active dosemeter
- Still not all parts of body covered (maybe brain, heart, is needed in future)
- Not always appropriate use of dosemeters: positioning errors, not worn
- Time to receive results
- Lost of dosemeters
- Technical limitations of personal dosemeters.
- Changes in radiological quantities and requirements....

Could computational dosimetry overcome the issues of the current individual monitoring system based on physical dosemeters?

Advantages:

- Physical dosemeters would not be needed (no lost of information).
- Organ doses could be calculated (any organ of interest, better knowledge of effective dose, no need of operational quantities.
- Accuracy could be improved (personalised dose calculation).



Information could be available in real time (or within the day).

• To improve occupational dosimetry by an innovative approach:

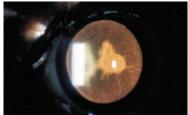
 Development of an online dosimetry application based on computer simulations and person recognition and tracking, <u>without the use of</u> <u>physical dosemeters</u>.

(images courtesy of LU)

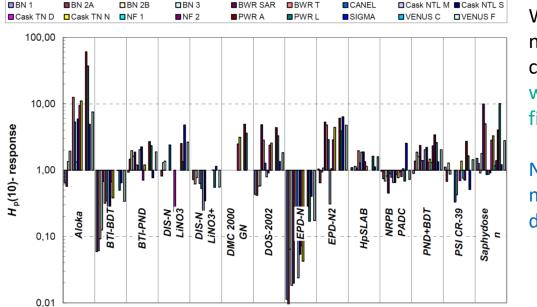
(image courtesy of SCK·CEN)

Feasability study – case 1

 Cardiologist and interventional radiologist are exposed to radiation during their usual work.


Hands and eyes are always close to the beam

Hands are sometimes inside the beam


Tissue damage

From ORAMED training material, available at www.oramed-fp7.eu

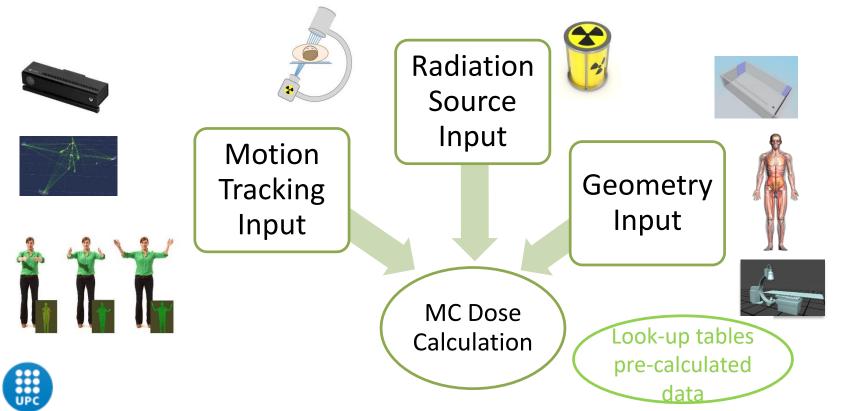
Workplaces with neutron or gamma neutron fields

Workplace fields involving neutrons typically quite complicate: large geometries, wide energy ranges, mixed fields.

Neutrons personal dosemeters have highly energydependent responses:

> ±2 orders of magnitude variation in workplace fields!

From Final report (summary) Evaluation of Individual Dosimetry in Mixed Neutron and Photon Radiation Fields (EVIDOS) https://cordis.europa.eu/project/id/FIKR-CT-2001-00175/reporting



How is PODIUM virtual dosimetry system working?

otection,

8

Staff movement monitoring and Radiation field mapping

Background

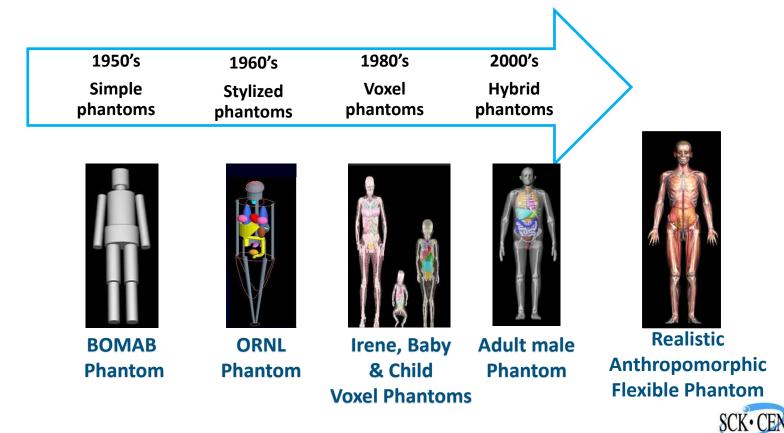
lebina

diation protection,

Position tracking technology

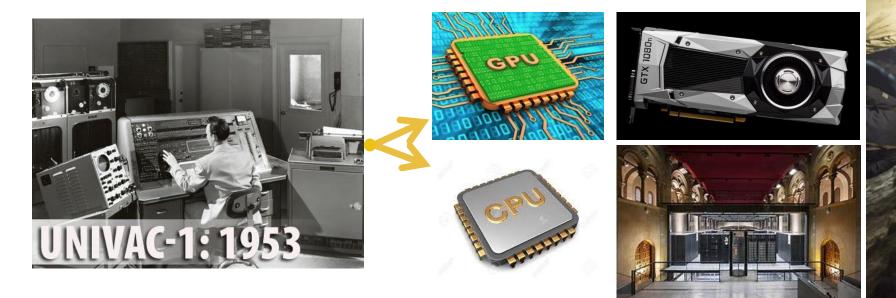
- Markerless tracking based on computer vision
- RGB-D cameras: combine color information with per-pixel depth information
- Cheap nowadays

Microsoft[®] Kinect V2 .0



ō

Phantoms for computational dosimetry



ebin

Calculation power, Monte Carlo

2018 Fast radiation transport calculation

liation protection, 2020 12

ebin

Workplan and structure

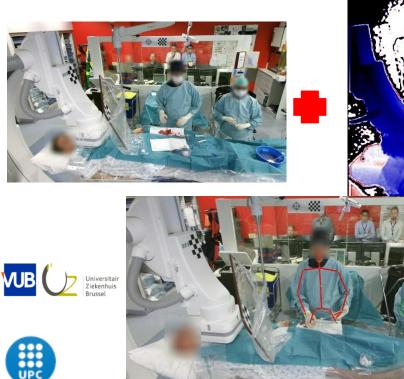
Main milestone: An online dosimetry application for interventional procedures WPO: Management Coordinator and WP leaders (PMB) RDSR WP1: Work place description: staff WP2: Dose simulations using movement monitoring and radiation computational phantoms and Monte Carlo methods source mapping Dose UPC, SCK, PHE, LU HMGU, UPC, SCK, PHE calculation WP3: Development of the softwaretool SCK, HMGU, UPC WP4: Assessment and validation WP5: Application in neutron of the on-line system in an Interventional Verification radiology hospital environment Verification PHE, SCK LU, SJH, EEAE, UPC in neutron in hospitals, fields WP6: Dissemination of the results of the project

EEAE, LU, SJH, UPC

nal radiation protection, July 22, 2020

Nebina

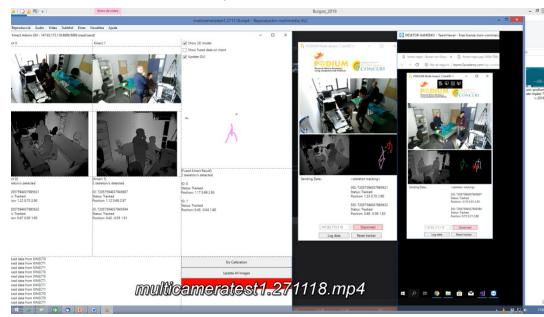
Main achievements for each workpackage


ō

WP1: Tracking – 1 camera

One Kinnect system (RGB+depth sensor)

Occasiona


Occasionaly miss-positions; occlusions by shielding.

(test in Uz-VUB-Brussels, image courtesy by SCK-CEN)

WP1: Tracking – 2 cameras

Multi-camera system (2 cameras under tests):

Main advantages:

 Occlusions of skeletons are avoided. e

liation

protection

2020

- The field of view is increased.
- Even when two or more people are close they are correctly identified.

Two tracking systems have been developed:

- One-camera tracking: Demonstrates to be enough for procedures where the operators can be seen from the position of the camera without obstacles and they don't change much their positions. It can work with some overlap between bodies but not with total occlusion.
- Multi-camera tracking: Besides increasing the view area, it overcomes most of the occlusion problems that appear with the one camera system. If needed, one can connect more than two cameras with a simple calibration procedure. The main drawback is that, at present, it needs one computer per camera.

WP1: Radiation source input Interventional radiology - cardiology

X-Ray spectrum

- Tube potential (kVp value)
- Tube current
- Added filtration
- Target material
- Voltage waveform

Tube Angulation

- C-arm projections
- Radiation field

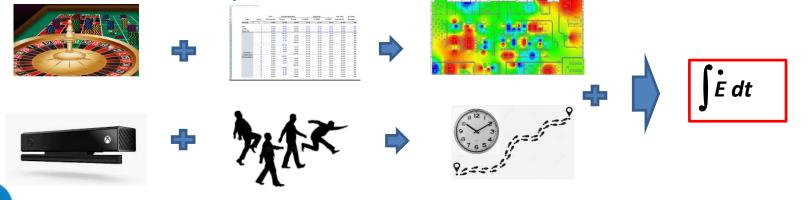
Ideally: on line information. In practice once the procedure is finished. Time synchronization with tracking system is needed.

WP1: Radiation source input Neutron workplaces

Secondary Standard Calibration Laboratory with Am-Be neutron source moderated by water containers

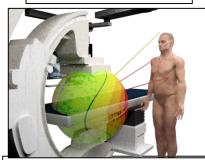
=

Simulated workplace well characterized

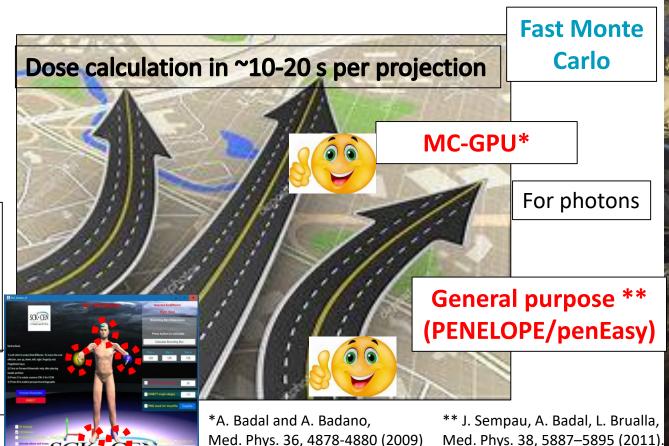

Transport container with spent MOX fuel in controlled area =

Real workplace field , not well characterized

- Geometry modelled with MCNP6.2 using macrobodies
- Source modelled with neutron energy spectrum. For unknown sources: iterative approach.
- Build map by characterizing fluence-energy-angle distribution of neutron and photon field as function of position \Rightarrow Then apply $E(\phi)/\Phi$ conversion coefficients
- Validation with survey instruments measurements.

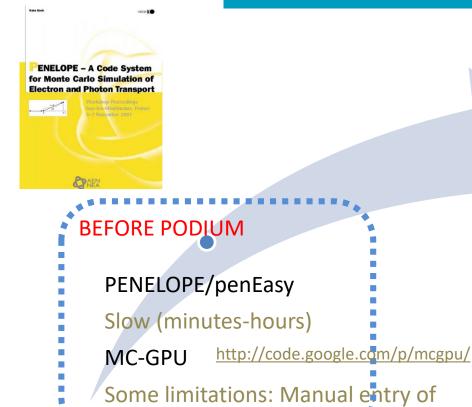


WP2: Dose calculation


Look-up tables pre-calculated data

For neutrons: Dose mapping

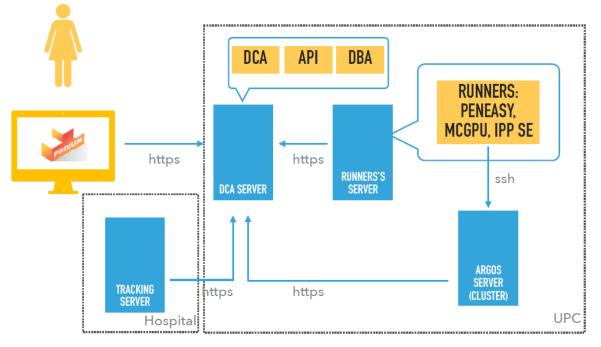
For photons: Ray tracing technique



ection, 020 21

WP2: Fast Monte Carlo codes for interventional radiology

radiation source


AFTER PODIUM PENELOPE/penEasyIR MCGPU-IR

Fast and automaticsimulationof aprocedure

WP3: On line application

ARCHITECTURE – PODIUM SETUP

* Runners's server is a virtual machine, hosted on argos server
 ** DCA server is provided by Computer Science Department

WP3: On line application

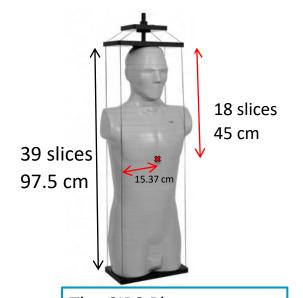
≡ PODIUM						۰ ،
	ocedures / SJH_20190	1523				
Dashboard	JH_20190	523 - Procedure				MG PO DC
🟯 Doses	-					
Procedures >						
۶ Admin		procedure finished procedure has finished and has the results of th	e recording process	and the radiation dose s	tructured report (RDSR), thus the	
🛱 Hospital 🔹 🔉	dose calculation can be started. Start the calculation of the radiation doses using the button below.					
Docs						
+ More	Calo	ulate doses				
Ba	asic Info		Patient		Monitored Worker	view profile
		SJH_20190523 (Internal ID: 21)	Gender	Weight 55.0 kg	Username 20-MW	Gender
	oom	OTHER SJH-Cath Lab 2	-	Height	Weight	•
	tart Date	5/23/19, 12:57 PM	Female	160 cm	65.0 kg	Male
	nd Date	5/23/19, 4:58 PM			Height 165 cm	
Pi	rocedure Operator	admin			Age	
St	tate	finished			39	
					Protections not available	

0

iation

protection,

2020



WP4: Validation in hospitals

Measurements in Skåne University Hospital in Malmö (Sweden

Patient phantom

The CIRS Phantom (Rayner Atom): Adult Male Rando.

X-RAY SYSTEM: SIEMENS AXIOM-Artis

Worker phantom

CT Torso Phantom CTU-41, Kyoto Kagaku

Passive and active personal dosemeters

Measurements in Skåne University Hospital (cont) Results

Case 1: Posterior - Anterior

	Measurement H _P (10)	PENELOPE	MC-GPU Beta	
Detector		Ratio Sim/Exp	Ratio Sim/Exp	
EPD1	73 ± 16	1.4 ± 0.4	1.1 ± 0.3	
EPD2	72 ± 16	1.3 ± 0.3	0.8 ± 0.2	
TLD1	85 ± 17	1.0 ± 0.2	0.9 ± 0.2	
TLD2	134 ± 27	1.2 ± 0.2	0.7 ± 0.2	

Simulation time: aprox. 2min
Statistical uncertainty (95% CI)

PENELOPE/penEasy < 1%
MC-GPU < 5 %

PENELOPE/penEasy: 2 x Intel Xeon
E5520 Processor (2.26GHz, 8M Cache)
+ 1 x 160GB SATA 7200

- MC-GPU beta: 2 x 1 Intel Xeon E5-2670 v3 (2,30GHz, 12N) + 1 x VGAs NVIDIA GeForce GTX 780 3GB GDDR5

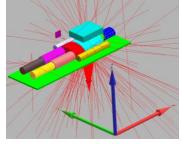
Uncertainty: 95 % CI

Case 2: 15 ^o angulation primary angle (range)

PENELOPE	MC-GPU Beta
Ratio Sim/Exp	Ratio Sim/Exp
0.8 - 1.0	0.6 - 0.8

WP4: Validation in hospitals

 First clinical measurements in Skåne University Hospital in Malmö (Sweden) and in Saint James Hospital in Dublin (Ireland)

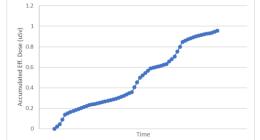

Angio with Iliac Stent (Saint James Hospital)

Fluoro KAP (Gy·cm²)	Acquisition KAP (Gy⋅cm²)	Total time screening (min)	Number of exposures
11.25	3.52	8	68

Calculated H _p (10)	EPD <i>H</i> _p (10)	Ratio
68.3 µSv	55 µSv	1.24

H_p(10) measured above the lead apron with EPD Operator not using ceiling shielding

Operator with personal dosemeters for validation



- Kinect set-up in laboratory to track people in real-time...
- Estimated 1 μSv effective dose for 1 minute activity: personal dosemeter threshold 100-200 μSv H_p(10)

WP5: Validation in SCK·CEN field

 Realistic dose of 7 µSv during 10 min of tracking ebin

tio

protection

22

Final workshop

19th EAN WORKSHOP

INNOVATIVE ALARA TOOLS

JOINTLY ORGANISED WITH THE

PODIUM (Personal Online DosImetry Using computational Methods) PROJECT

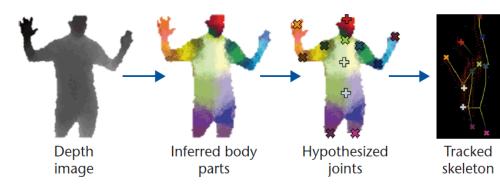
https://podiumconcerth2020.eu/

Athens, 26th -29th November 2019

iation protection 2020 30

- PODIUM results are promising (50%) and show that computational dosimetry can be a viable alternative to physical dosemeters in personal dosimetry.
- The feasibility study has been a success:
 - The technology is available for:
 - Tracking people to be monitored,
 - Calculating doses fast (by look-up table / dose mapping or Monte-Carlo)
 - having detailed and personalized phantoms.
- Challenges:
 - Include radiation protection means in the tracking and the simulation.
 - Complete automatic set-up, increase number of real tests.
 - Privacy, ethics, data protection and IT security.
 - To gain real-time position and dose information from X-ray machine.
- We are working on an exploitation plan to ensure its final development and its introduction in the market.

Thank you for your attention



PODIUM is part of the CONCERT project. It has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 662287..

Kinect V2: Skeleton Tracking

- Shotton et al. [CVPR, 2011] proposed two main steps:
 - 1. Find body parts
 - 2. Compute joint positions
- Body position is inferred using Randomized Decision Forests
 100K poses → 1 million training samples

Real-Time Human Pose Recognition in Parts from Single Depth Images

Jamie Shotton Andrew Fitzgibbon Mat Cook Toby Sharp Mark Finocchio Richard Moore Alex Kipman Andrew Blake Microsoft Research Cambridge & Xbox Incubation

Track up to 25 joints:

- Position in 3D space in
- Rotation available in qu