

Status of the international review on SFR SDC Phase I report and SDG development in Phase II

Ryodai Nakai GIF SDC TF Chair

5th Joint IAEA-GIF Workshop on Safety of SFR Vienna 23-24 June 2015

Contents

- Introduction
- Safety Design Criteria (SDC) for Gen IV SFR
 - Status of International Reviews on the SDC Report
- Safety Design Guidelines (SDGs) Development
 - Objectives and Current Status
- Concluding Remarks

Introduction

- Safety Design Criteria (SDC) development for Generation-IV systems was proposed at GIF Policy Group meeting in October 2010
 - SFR system was selected as the initial application since it represents one of the more mature next generation nuclear energy concepts
 - » Several prototypes being pursued by GIF member states
- Task Force (TF) started work in 2011 and completed SDC Phase I report in 2013
 - Establish reference criteria for safety design of structures, systems and components
 - Achieve harmonization of safety approaches among GIF member states
 - » Realization of enhanced safety designs common to Gen-IV SFRs
 - » Preparation for upcoming licensing efforts

Introduction (continued)

- An important incentive and motivation for further technical interpretation and clarification of SDC
- Phase II activity of SDC TF for the development of safety design guidelines (SDG) was started in September 2013
 - To support practical application of SDC
 - » Quantification of key aspects
 - » Clarification on technical issues for common understandings

Hierarchy of Safety Standards

5th Joint IAEA-GIF Workshop on Safety of SFR, Vienna, 23-24 June 2015

Status of International reviews on SDC

- GIF SFR "SDC Phase 1 Report"
 - Review requests for the SDC Report
 - » For "Review by external organizations" and
 - » For "Enhancing interaction with regulatory bodies"
 - Sent the report (ca. July 2013) to
 - » International organizations IAEA, MDEP, OECD/NEA/CNRA
 - » Regulatory authorities at national level China (NNSA), Euratom (ENSREG), France (ASN), Japan (NRA), Republic of Korea (NSSC), Russia (Rostechnadzor), USA (NRC)

International reviews on "SDC" (1)

- IRSN (France)
 - Comments on interim version at 3rd GIF-IAEA Safety Workshop (Feb. 2013), resolutions already included in Phase I report.
- NNSA (China)
 - *Review results (Oct. 2013 & Jan. 2014)*
 - GIF SDC TF resolution replied (Aug. 2014)
 - Consideration on Sodium Void Worth at SDG report
- NRC (USA)
 - Comprehensive & detailed review, with proposals (Jan. 2014)
 - GIF SDC Task Force prepared the resolutions to incorporate
- IAEA
 - General and technically specific reviews (April 2014)
 - GIF SDC Task Force prepared the resolutions to incorporate

International reviews on "SDC" (2)

- Rostechnadzor (Russia)
 - Comments on SDC report at 4th IAEA-GIF Safety Workshop (June. 2014)
 - Containment function will be discussed in the SDG/SSC development
- IRSN (France)
 - Comments on SDC report (June 2015)
 - To be discussed and consider to incorporate

External feedbacks have been or are being incorporated

Safety Design Guidelines (SDG) Development

- Main objective
 - to support practical application of SDC in design process for improving safety in specific topical areas
 - » including use of inherent/passive safety features
 - » design measures for prevention and mitigation of severe accidents.
 - Initial topical areas are considered:
 - Particular importance since a fast reactor core is typically not in its most reactive configuration
 - » Quantification of key criteria for safety improvement

Schematic View of SDG Development Schedule

2013	2014		2015		2016	
Terms of Reference						
SDG on Safety Approach Table of Contents Identification of discussion points	Reactivity issuePrevention & Mitigation of severe accidentsLoss of heat removal issueAccident conditions to be practically eliminated		inal Report			
	Draft	Report				
SDGs on Key Structures.		Functional on	l Requirements SSC	Set of desig → (e.g. postulated parameters &	n conditions d events, design constraints)	
Systems and Components	Table of ContentsIdentification of	Guidelines for Reactor Core Discussion points (e.g. fuel performance in DBA, DEC, Passive or inherent reactivity features)				
	discussion points	Guidelines for Reactor Coolant System				
		Discussion points (e.g. sodium chemical reactions, passive or alternative cooling features) Guidelines for Containment Vessel Discussion points (e.g. severe accident conditions and measures, Accident management)				
			Draft Re	port	Final l	Report

Exploiting SFR Characteristics to Enhance Safety

- Passive/Inherent safety for DEC
 - On reactivity
 - » Inherent reactivity feedback to reduce the power as core temperatures rise or
 - » Passive mechanism are applicable for shutdown systems, such as SASS, HSR, and GEM
 - On decay heat removal
 - » Natural circulation of single phase sodium coolant
 - » can be placed in different locations for enhancing diversity

Exploiting SFR Characteristics to Enhance Safety

- In-Vessel Retention
 - In the course of core degradation during unprotected transients, measures should be provided to prevent prompt criticality
 - Reactor coolant boundary should maintain the boundary function against pressure load including fuelcoolant interaction
 - Measures should be provided for ensuring long term cooling of core materials inside the reactor vessel under sub-critical condition

Practical Elimination of Accident Situations:

- Severe accidents with mechanical energy release higher than the containment capability
 - **Power excursions for intact core situations**
 - » Large gas flow through the core
 - » Large-scale core compaction
 - » Collapse of the core support structures
- Situations leading to the failure of the containment with risk of fuel damage
 - Complete loss of decay heat removal function that leads to core damage and failure of primary coolant boundary
 - Core uncovering due to sodium inventory loss
- Fuel degradation in fuel storage or during when the containment may not be functional due to maintenance
 - Core damage during maintenance
 - Spent fuel melting in the storage

Quantification of requirement on reactivity characteristics

- For Normal operation, AOO and DBA
- » Power reactivity coefficient < 0 (Negative)
- » Reactor shutdown capability with inherent feedback

> Postulated reactivity insertion

- For Design Extension Condition
 - » Before core damage: same as the requirement for DBA,
 - Achieved by passive measures or inherent features
 - » After core damage:
 - Total reactor core reactivity < 1\$ (below prompt criticality)</p>
 - » Sodium void worth can be positive as far as the above conditions are satisfied.

Concluding Remarks

- The "Safety Design Criteria Phase 1 Report"
 - Issued by the GIF on May 2013
 - Disseminated for international review to:
 - » International organizations
 - » National Regulatory Bodies
 - Important feedbacks have been or are being incorporated:
 - » e.g. IAEA, IRSN, USNRC, NNSA, Rostechnadzor ...
- The "Safety Design Guidelines" development in Phase II
 - Started from Sept. 2013
 - Two Safety Design Guidelines (SDG):
 - » Safety Approach and Design Conditions SDG in final drafting stage
 - » Key Structures, Systems and Components SDG

Thank you for your attention !!