Current status in OA biological research

OA impacts

Summary of effects of acidification among selected taxonomic groups. Effects are either a mean percent increase or decrease in a given response, or as no overall positive or negative response. Aller Receiver et al. 2013.

TAXA	RESPONSE	MEAN EFFECT	TAXA	RESPONSE	MEAN EFFECT
Calcifying algae	Survival		Crustaceans	Survival	
	Calcification			Calcification	
	Growth			Growth	
	Photosynthesis	-28%		Development	
	Abundance	-80%		Abundance	
N	Survival		200	Survival	
	Calcification	-32%		Calcification	
	Growth			Growth	
	Development			Development	
Corals	Abundance	-47%	Fish	Abundance	
Coccolithophores	Survival		¥	Survival	
	Calcification	-23%		Calcification	
	Growth			Growth	+22%
	Photosynthesis			Photosynthesis	
	Abundance		Fleshy algae	Abundance	
Molluscs	Survival	-34%	Y	Survival	
	Calcification	-40%		Calcification	
	Growth	-17%		Growth	
	Development	-25%		Photosynthesis	
	Abundance		Seagrasses	Abundance	
Echinoderms	Survival		Diatoms	Survival	
	Calcification			Calcification	
	Growth	-10%		Growth	+17%
	Development	-11%		Photosynthesis	+12%
	Abundance			Abundance	

- Single-species experiments
- Big focus on calcification

PML

Plymouth Marine Laboratory

Not tested or too few studies Enhanced <25% No overall +ve or -ve response Reduced <25% Reduced >25%

What is driving the response?

• What are the underlying mechanisms that control the response?

Energetics

• Trade-offs between processes if energy limited

Adapted from Turley, in press

Energetics & whole organism approach

pH

Wood et al. (2008)

6.8

7.7

7.7

6.8

Energetics & whole organism approach

• The addition of food can counter impacts of OA

Plymouth Marine Laboratory

Energetics & whole organism approach

 Increased energy (food supply) can overcome dissolution

Interactions – feeding & predation

PML | Plymouth Marine Laboratory

• Foraging and feeding can themselves be impacted by OA

Queiros et al. (2014)

Interactions – Predator – prey

• Chemical cues can be impacted

Nilsson et al. (2012)

Interactions - Food quality feedbacks

Plymouth Marine

Laboratory

Ρ

Interactions - Food quality feedbacks

Phytoplankton - Rhodomonas salina Changes in food quality ۲ 14 -Α impacts herbivores 12 10 C:N ratio 0.55 а 8 а Developmental rate (stages d⁻¹) 6 0.50 а 4 b 2 0.45 С 0 200 400 800 CO₂ Treatment 0.40 Schoo et al. (2013) 0.35 400 200 800 CO₂ Treatment Copepod - Acartia tonsa Respiration rate (µg C Ind⁻¹ h⁻¹) 0.20 0.03 в Α ab DOC (µg C Ind⁻¹ h⁻¹) 0.15 -0.02 а 0.10 0.01 0.05 0.00 0.00 200 200 400 800 400 800 CO₂ Treatment CO₂ Treatment

Plymouth Marine Laboratory

Natural variability – benthic vs pelagic

• The environment is dynamic and organisms live in different regions; different life stages...

Plymouth Marine Laboratory

Natural variability – life cycle specific

The environment is dynamic and organisms live in different regions; different life stages...

Plymouth Marine Laboratory

Natural variability – tidal influence

• Tidal variability – even at 120 m!

Natural variability – organism behaviour

 Behaviour can dictate environmental experience

A

Adult Calanus Survival (%)

>250 µm nauplii O Survival (%)

Plymouth Marine Laboratory

PML

Lewis et al. (2013)

Population differences

Temperature (°C) Temperature (°C) Walther et al. (2010)

 9 15

Temperature (°C)

9 15

Multiple stressor impacts

Knowledge gaps

- Underlying mechanisms behind responses? Other end-points, trade-offs, feeding?
- How will **food quantity, quality** change?
- Natural variability influence on sensitivity; implications for plasticity?
- Long-term **shifts in range** of variability?
- Response of **populations of the same species** in different locations?
- Understanding the **standing genetic variation**?
- Experimental assessment of **evolution**? Transgenerational effects?
- **Combined** environmental stressors?