

CO₂ system Calculation Part 2

Using CO₂ system calculations for experimental CO₂ manipulations

Introduction

- Impact of changing seawater chemistry as a result of OA on marine organisms is not well constrained
- Experimental data are needed to understand the consequences
- Perturbation experiments of seawater chemistry are key approaches to investigating biological responses to increasing pCO2
- We will examine several techniques carried out in closed and open cell vessels and discuss pros and cons of these approaches

Main approaches to manipulate CO2-system chemistry

- Change TCO2 at constant TA
- Gas bubbling
- Add high-CO₂ sea water
- Add CO_3^2 and/or HCO_3^2 followed by strong acid
- Change TA at constant TCO₂
- Add strong acids and base
- Change TA & TCO2
- Add CO_3^{2-} and/or HCO_3^{-}
- Manipulate [Ca²⁺]

We will follow modified Gattuso et al. 2009 examples

also section 2 of Guide to Best Practices

Assumptions:

Seawater pCO2 Target pCO2 Salinity Temperature Depth Phosphate & Silicate TA

- = 384 µatm (Year = 2007)
- = 793 µatm (Year = 2100)
- = 34.9
- = 18.9°C
- = o m
- e = o μmol/kg SW
 - = 2325

Except we will usse Lueker et al. 2000 K1,K2, Dickson 1990 KHSO4 constants ; Use pH-total scale ;Use Uppstrom et al., 2010 Boron constant

Bubbling gas in a vessel is fairly easy effective way to manipulate CO₂system chemistry

Systems that have been used:

control atmospheric co2 and then bubble that into container

pH-stat- pH is monitored continuously and controller opens or closes valves when pH goes above or below the target value

Lets get started "bubbling"

 Scenario: You have a seawater sample that has the following conditions-

Sal =34.9 T= 18.9C pH= 8.2 TA= 2300 µmol/kg Nutrients were not measured

To "mimic" year 2100, you bubble in a CO2 —air mixture of 793 µatm— what is your final pH?

Constants: K1,K2:Leuker, KSO4: Dickson, pHtot, Bt: Uppstrom

8.2 starting point

put Conditions	Computed Const	ants		
Physical Param	eters	Carbonate	Auxillary Results	
Salinity		TA (µmol/kgSW)	HCO3 (µmol/kgSW)	Ω Ca (Using:
34.900		2300.000	1720.601	Ca from Salinity CO3 from Carbonates)
Temperature (°C)		TCO2 (µmol/kgSW)	CO2 (µmol/kgSW)	5.607
18.900		1963.773	8.664	Ω Ar (Using:
Pressure (dbars)		pH (chosen scale)	B Alk (µmol/kgSW)	Ca from Salinity
		8.200	104.941	CO3 from Carbonates)
Density (kg m^3) 1024.971		fCO2 water (µatm)	OH (µmol/kgSW)	3.633
		259.093	5.447	Ω Ca (Using User Values)
.		pCO2 water (µatm)	P Alk (µmol/kgSW)	
Nutrient Data Total P (µmol/kgSW) 0.000		259.987	0.000	Ω Ar (Using User Values)
		CO3 (µmol/kgSW)	Si Alk (µmol/kgSW)	
		234.509	0.000	
Total Si (µmol	/kgSW)		Revelle	
0.000		Calcium	9.106	
		Calculated (µmol/kgSW)		
Air-Sea CO2 Flu		10255.185	xCO2 (dry @ 1 atm) (ppm)	
Flux (mmol/m	1^2/d)	User Value	265.598	

- (Calculation Preferen	Preferences					
	CO2 Constant:	Lueker et al., 2000					
	pH Scale:	Total scale (mol/ko-SW)	KHSO4:	Dickson, 1990			

At 793µatm pH=7.789

ut Conditions	Computed Cor	iscalics		
Physical Param	eters	- Carbonate	Auxillary Results	
Salinity		TA (µmol/kgSW)	HCO3 (µmol/kgSW)	Ω Ca (Using:
34.900		2300.000	2034.717	Ca from Salinity CO3 from Carbonates)
Temperature (°C)		TCO2 (µmol/kgSW)	CO2 (µmol/kgSW)	2.571
18.900		2168.661	26.425	Ω Ar (Using:
Pressure (dbars)		pH (chosen scale)	B Alk (µmol/kgSW)	Ca from Salinity
0.000		7.789	48.150	CO3 from Carbonates)
Density (kg m^3)		fC02 water (µatm)	OH (µmol/kgSW)	1.666
1024.971		790.273	2.112	Ω Ca (Using User Values)
		pCO2 water (µatm)	P Alk (µmol/kgSW)	
Nutrient Data		793.000	0.000	Ω Ar (Using User Values)
Total P (µmol/kgSW)		CO3 (µmol/kgSW)	Si Alk (µmol/kgSW)	
0.000		107.519	0.000	
Total Si (µmo	/kgSW)		Revelle	
0.000		Calcium	14.284	
		Calculated (µmol/kgSW)	14.204	
Air-Sea CO2 Flux Flux (mmol/m^2/d)		10255.185	xCO2 (dry @ 1 atm) (ppm)	
		User Value	810.116	

 Calculation Preferences

 CO2 Constant:
 Lueker et al., 2000

 pH Scale:
 Total scale (mol/kg-SW)

 KHSO4:
 Dickson, 1990

 Total Boron:
 Uppstrom, 1974

 Air-Sea Flux:

Now using a pH-stat system

- Scenario: You have a seawater sample that has the following conditions-
- Sal =34.9 T= 18.9C pH= 8.2 TA= 2300 µmol/kg

Nutrients were not measured

Now, you want to keep pH at 7.3 target – what [CO2] do you bubble in?

pCO2 of water should be = 2648.554

ut Conditions	Computed Con	stants		
hysical Param	eters	Carbonate	Auxillary Results	
Salinity		TA (µmol/kgSW)	HCO3 (µmol/kgSW)	Ω Ca (Using:
34.900		2300.000	2206.673	Ca from Salinity CO3 from Carbonates)
Temperature (°C) 18.900 Pressure (dbars) 0.000		TCO2 (µmol/kgSW)	CO2 (µmol/kgSW)	0.905
		2332.795 88.258		Ω Ar (Using:
		pH (chosen scale) B Alk (µmol/k	B Alk (µmol/kgSW)	Ca from Salinity
		7.300	16.966	CO3 from Carbonates)
Density (kg m^3) 1024.971		fCO2 water (µatm)	OH (µmol/kgSW)	0.587
		2639.448	0.686	Ω Ca (Using User Values)
		pCO2 water (µatm)	P Alk (µmol/kgSW)	
lutrient Data –		2648.554	0.000	Ω Ar (Using User Values)
Total P (µmol/kgSW)		CO3 (µmol/kgSW)	Si Alk (µmol/kgSW)	
	0.000	37.863	0.000	
Total Si (µmol	/kgSW)		Revelle	
	0.000	Calcium	16.714	
Air-Sea CO2 Flu Flux (mmol/m		Calculated (µmol/kgSW) 10255.185 User Value	xCO2 (dry @ 1 atm) (ppm) 2705.719	

TA constant Summary: Bubbling of CO2 gas

Technique: Bubble CO₂ gas mixtures in seawater

- (1) air and CO2
- (2) CO2-free air and CO2
- (3) CO2-free air, air and CO2

(1) pH-stat or pCO2-stat

(2) bubbling with premixed gases (purchased or made with mass flow controllers or gas mixing pumps)

In both cases, TCO2 increased and TA remained same

Advantages: TA unaffected

Disadvantages: Requires daily calibration; Can cause coagulation of organic matter, or unwanted turbulence; changes in alkalinity because of precipitation or dissolution of caco3 not accounted for

seacarb: pgas

TCO2 increased TA constant

Bubbling of CO₂ gas

Example: Estimate the volume of CO2 gas needed to adjust pCO2 from 384 to 793 µatm

@STP:

 $L of CO_{(g)} = \Delta TCO_2 (mol kg^{-1} SW) * Mol. Wt. CO_2 / density of CO_{(g)}$

L of CO2_(g) = (0.000126 mol kg⁻¹ SW * 44.01 g CO2 mol⁻¹)/1.808 g L⁻¹ = 0.00443 L kg⁻¹ SW = 4.43 mL kg⁻¹ SW

In reality, this calculation is not very useful. The best way to determine volume of gas needed is to experiment with it!

Technique: Mixing of two water masses (T=18.9°C; S=34.9; TA=2325 μmol kg⁻¹)

Water mass #1: pCO2=10⁶ µatm (CO2-saturated)

Water mass #2: pCO2=384 μatm Desired mass: pCO2=793 μatm

Q: What proportions of water masses #1 and #2 should be mixed to achieve the desired concentration?

Technique: Mixing of two water masses (T=18.9°C; S=34.9; TA=2325 μmol kg⁻¹)

Water mass #1: pCO2=10⁶ μatm -> TCO2 = 35666 μmol kg⁻¹ Water mass #2: pCO2=384 μatm -> TCO2 = 2063 μmol kg⁻¹ Desired mass: pCO2=793 μatm -> TCO2 = 2190 μmol kg⁻¹

Technique: Mixing of two water masses (T=18.9°C; S=34.9; TA=2325 μmol kg⁻¹)

 Water mass #1: pCO2=10⁶ μatm
 -> TCO2 = 35666 μmol kg⁻¹

 Water mass #2: pCO2=384 μatm
 -> TCO2 = 2063 μmol kg⁻¹

 Desired mass:
 pCO2=793 μatm
 -> TCO2 = 2190 μmol kg⁻¹

Basic Mixing Equation:

 $Conc_1 \times Vol_1 + Conc_2 \times (Vol_2 - Vol_1) = Conc_3 \times (Vol_2)$

35666 μ mol kg⁻¹ × (V₁) + 2063 μ mol kg⁻¹ × (1-V₁) = 2190 μ mol kg⁻¹ × (1)

Vol₁ = 0.00378 kg of high pCO2 seawater 1-V₁ = 0.99622 kg of normal pCO2 seawater

Technique: Mixing of two water masses

- 1. Water with normal values (e.g. pCO2=373 uatm)
- 2. Water that has been saturated with CO₂ ($pCO_2=10^6$ uatm)

Advantages:

- Natural simulation of future conditions
- No effect on TA

Disadvantages:

• High pCO2 waters can easily lose CO2 due to gas exchange

Seacarb function: pmix

TA constant Adding CO3²⁻ and/or HCO3⁻ + acid

Technique:

- 1. Add CO3 and/or HCO3 to obtain desired TCO2 level
- 2. Add acid to lower TA to desired TCO2 level

Example:

Add 15.3 x 10⁻⁶ mol kg⁻¹ of Na₂CO3
 Add 111.2 x 10⁻⁶ mol kg⁻¹ of NaHCO3

Note that this elevates DIC by 126.5 umol But also elevates TA by 141.8 umol

- 2. Calculate the resulting CO2-system chemistry
- 3. Add 14.18 ml of 0.01N HCl to restore TA to initial value
- 3. Calculate the final CO₂-system chemistry

TCO2 constant TA increased Adding strong acids, bases

Technique: Add strong acids to decrease TA - OR – Add strong bases to increase TA

- 1. In a closed system, DIC remains unchanged
- 2. In an open system, DIC will change due to air-sea gas exchange

Example:

- How much acid do you need to change the alkalinity to cause a pCO2 change from 394 to 793 uatm? Answer 140.8 umol kg-1
- 2. Add 14.08 ml of 0.01N HCl to 1 kg seawater
- 3. Calculate the CO2-system chemistry in a closed system

seacarb function: ppH

TCO2 constant TA increased Adding strong acids, bases

Technique: Add strong acids to decrease TA - OR – Add strong bases to increase TA

- 1. In a closed system, DIC remains unchanged
- 2. In an open system, DIC will change due to air-sea gas exchange

Advantages:

Relatively easy to do

Can be used in flow-through systems

Disadvantages:

Not a realistic representation of the CO₂ chemistry but depends on your question

TCO2 changed TA changed Adding CO3²⁻ and/or HCO3⁻ (no acid addition)

- **Technique:** Add CO₃ and/or HCO₃ to obtain desired TCO₂ level
- 1. Closed system:

TA increases by: $2x\Delta[CO3^{2-}]$ and $1x\Delta[HCO3^{-}]$ DIC increases by: $1x\Delta[CO3^{2-}]$ and $1x\Delta[HCO3^{-}]$

2. Open system: DIC equilibrates due to air-sea gas exchange

Advantages:

Can be used to examine physiological responses to different components of the carbonate chemistry

Disadvantages:

Not recommended

seacarb function: pTA

Manipulation of [Ca²⁺]

Technique: Add or reduce the [Ca2+] levels

Causes changes in the CaCO₃ saturation states

Advantages:

Can be used to examine the role of Ca2+ in saturation state and it's effects on organisms

Disadvantages:

Not recommended

seacarb function: pCa

Summary of Methods

Approach	Target values reached?	Ease of use	Relative cost
Acid addition	No (only pCO2)	***	*
Acid addition and restoration of TA	Yes	*	*
Gas bubbling	Yes	***	***
Mixing with high- CO ₂ seawater	Yes	**	*
Addition of HCO ₃ - and/or CO ₃ ²⁻	No	**	*
Calcium manipulation	No (only Ω)	*	*

- ✓ Understand how your choice of approach affects carbonate chemistry
- ✓ The more information you have for planning, the better
- ✓ Choose reasonable target conditions
- Know your chemistry...don't rely on CO2calc (or any other program) to know it for you...this is a VERY common mistake
- Biological effects on the chemistry must be considered in experimental design
- Monitor closely before, during, and after chemical manipulations and throughout experiments