

CO2 system Calculation Part 2

Using CO² system calculations for experimental CO² manipulations

Introduction

- Impact of changing seawater chemistry as a result of OA on marine organisms is not well constrained
- Experimental data are needed to understand the consequences
- Perturbation experiments of seawater chemistry are key approaches to investigating biological responses to increasing pCO2
- We will examine several techniques carried out in closed and open cell vessels and discuss pros and cons of these approaches

Main approaches to manipulate CO2-system chemistry

- **Change TCO2 at constant TA**
- **Gas bubbling**
- $-$ Add high-CO₂ sea water
- **Add CO³ 2-and/or HCO³ - followed by strong acid**
- **Change TA at constant TCO2**
- **Add strong acids and base**
- **Change TA &TCO2**
- $-$ Add CO₃²⁻**and/or HCO**₃
- **Manipulate [Ca2+]**

We will follow modified Gattuso et al. 2009 examples

also section 2 of Guide to Best Practices

Assumptions:

Salinity Temperature $Depth$ $=$ 0 m Phosphate & Silicate $=$ 0 μ mol/kg SW $TA = 2325$

Seawater $pCO₂$ = 384 μ atm (Year = 2007)

Target $pCO₂$ = 793 μ atm (Year = 2100)

$$
= 34.9
$$

$$
=18.9^{\circ}\mathrm{C}
$$

Except we will usse Lueker et al. 2000 K1,K2, Dickson 1990 KHSO4 constants ; Use pH-total scale ;Use Uppstrom et al., 2010 Boron constant

Bubbling gas in a vessel is fairly easy effective way to manipulate CO2 system chemistry

Systems that have been used:

control atmospheric co2 and then bubble that into container

pH-stat- pH is monitored continuously and controller opens or closes valves when pH goes above or below the target value

Lets get started "bubbling"

• Scenario: You have a seawater sample that has the following conditions-

Sal =34.9 T= 18.9C pH= 8.2 TA= 2300 µmol/kg Nutrients were not measured

To "mimic" year 2100, you bubble in a CO2 –air mixture of 793 μ atm– what is your final pH?

Constants: K1,K2:Leuker, KSO4: Dickson, pHtot, Bt: Uppstrom

…..

8.2 starting point

At 793µatm pH=7.789

Calculation Preferences Lueker et al., 2000 CO2 Constant: pH Scale: Total scale (mol/kg-SW) Dickson, 1990 KHSO4: Total Boron: Uppstrom, 1974 Air-Sea Flux:

Now using a pH-stat system

- Scenario: You have a seawater sample that has the following conditions-
- $Sal = 34.9$ T= $18.9C$ pH= 8.2 TA= 2300 µmol/kg

Nutrients were not measured

Now, you want to keep pH at 7.3 target – what [CO2] do you bubble in?

pCO2 of water should be = 2648.554

Summary: Bubbling of CO2 gas TA constantTCO2 increased

Technique: Bubble CO2 gas mixtures in seawater

(1) air and CO2

- (2) CO2-free air and CO2
- (3) CO2-free air, air and CO2
- (1) pH-stat or pCO2-stat
- (2) bubbling with premixed gases (purchased or made with mass flow controllers or gas mixing pumps)

In both cases, TCO2 increased and TA remained same

Advantages: TA unaffected

Disadvantages: Requires daily calibration; Can cause coagulation of organic matter, or unwanted turbulence; changes in alkalinity because of precipitation or dissolution of caco3 not accounted for

seacarb: pgas

Bubbling of CO2 gas TCO2 increased TA constant

Example: Estimate the volume of CO2 gas needed to adjust pCO2 from 384 to 793 μatm

@STP:

L of $CO_{2_{(q)}}$ = ΔTCO_{2} (mol kg⁻¹ SW) * Mol. Wt. CO2 / density of $CO_{2_{(q)}}$

L of CO2 $_{\rm (g)}$ = (0.000126 mol kg⁻¹ SW * 44.01 g CO2 mol⁻¹)/1.808 g L⁻¹ $= 0.00443$ L kg⁻¹ SW $= 4.43$ mL kg⁻¹ SW

In reality, this calculation is not very useful. The best way to determine volume of gas needed is to experiment with it!

Technique: Mixing of two water masses (T=18.9°C; S=34.9; TA=2325 μmol kg-1)

Water mass #1: pCO2=10⁶ μatm (CO2-saturated)

Water mass #2: pCO2=384 μatm **Desired mass:** pCO2=793 μatm

Q: What proportions of water masses #1 and #2 should be mixed to achieve the desired concentration?

Technique: Mixing of two water masses (T=18.9°C; S=34.9; TA=2325 μmol kg-1)

Water mass #1: pCO 2=10⁶ μ atm \rightarrow TCO2 = 35666 μ mol kg⁻¹ **Water mass #2:** $pCO2=384 \mu$ atm \rightarrow TCO2 = 2063 μ mol kg⁻¹ **Desired mass:** pCO2=793 μatm -> TCO2 = 2190 μmol kg-1

Technique: Mixing of two water masses (T=18.9°C; S=34.9; TA=2325 μmol kg-1)

Water mass #1: pCO 2=10⁶ μ atm \rightarrow TCO2 = 35666 μ mol kg⁻¹ **Water mass #2:** pCO2=384 μatm -> TCO2 = 2063 μmol kg-1 **Desired mass:** pCO2=793 μatm -> TCO2 = 2190 μmol kg-1

Basic Mixing Equation:

 $\textsf{Conc}_{1} \times \textsf{Vol}_{1}$ **+ Conc**₂ \times (Vol₂ \textsf{Vol}_{1}) = Conc₃ \times (Vol₂)

35666 μmol kg-1 × (V¹) + 2063 μmol kg-1 × (1-V¹) = 2190 μmol kg-1 × (1)

Vol¹ = 0.00378 kg of high pCO2 seawater 1-V¹ = 0.99622 kg of normal pCO2 seawater

Technique: Mixing of two water masses

- 1. Water with normal values (e.g. pCO2=373 uatm)
- 2. Water that has been saturated with $CO₂$ (pCO₂=10⁶ uatm)

Advantages:

- Natural simulation of future conditions
- No effect on TA

Disadvantages:

• High pCO2 waters can easily lose CO2 due to gas exchange

Seacarb function: pmix

Adding CO3 2- and/or HCO3 - + acid TCO2 increased TA constant

Technique:

- 1. Add CO₃ and/or HCO₃ to obtain desired TCO₂ level
- 2. Add acid to lower TA to desired TCO2 level

Example:

1. Add 15.3 x 10[−]⁶ mol kg[−]¹ of Na2CO3 Add 111.2 x 10[−]⁶ mol kg[−]¹ of NaHCO3 Note that this elevates DIC by 126.5 umol But also elevates TA by 141.8 umol

- **2. Calculate the resulting CO2-system chemistry**
- **3. Add 14.18 ml of 0.01N HCl to restore TA to initial value**
- **3. Calculate the final CO2-system chemistry**

Adding strong acids, bases TCO2 constant TA increased

Technique: Add strong acids to decrease TA - OR – Add strong bases to increase TA

- 1. In a closed system, DIC remains unchanged
- 2. In an open system, DIC will change due to air-sea gas exchange

Example:

- *1. How much acid do you need to change the alkalinity to cause a pCO2 change from 394 to 793 uatm?* **Answer 140.8 umol kg-1**
- **2. Add 14.08 ml of 0.01N HCl to 1 kg seawater**
- **3. Calculate the CO2-system chemistry in a closed system**

seacarb function: ppH

Adding strong acids, bases TCO2 constant TA increased

Technique: Add strong acids to decrease TA - OR – Add strong bases to increase TA

- 1. In a closed system, DIC remains unchanged
- 2. In an open system, DIC will change due to air-sea gas exchange

Advantages:

Relatively easy to do

Can be used in flow-through systems

Disadvantages:

Not a realistic representation of the CO2 chemistry but depends on your question

Adding CO3 2- and/or HCO3 - (no acid addition) TCO2 changed TA changed

- **Technique:** Add CO₃ and/or HCO₃ to obtain desired TCO₂ level
- 1. Closed system:

TA increases by: $2 \times \Delta$ [CO3²⁻] and $1 \times \Delta$ [HCO3⁻] DIC increases by: 1xΔ[CO3²⁻] and 1xΔ[HCO3⁻]

2. Open system: DIC equilibrates due to air-sea gas exchange

Advantages:

Can be used to examine physiological responses to different components of the carbonate chemistry

Disadvantages:

Not recommended

seacarb function: pTA

Manipulation of [Ca2+]

Technique: Add or reduce the [Ca2+] levels

Causes changes in the CaCO3 saturation states

Advantages:

Can be used to examine the role of Ca2+ in saturation state and it's effects on organisms

Disadvantages:

Not recommended

seacarb function: pCa

Summary of Methods

- **Understand how your choice of approach affects carbonate chemistry**
- **The more information you have for planning, the better**
- **Choose reasonable target conditions**
- **Know your chemistry…don't rely on CO2calc (or any other program) to know it for you…this is a VERY common mistake**
- **Biological effects on the chemistry must be considered in experimental design**
- **Monitor closely - before, during, and after chemical manipulations and throughout experiments**