

International Conference on Physical Protection of Nuclear Material and Nuclear Facilities 13–17 November 2017, Vienna, Austria

IAEA-CN-254-111

Vision-based Hand Motion Recognition for Insider Sabotage Detection using Deep Learning

Shi CHEN, Kazuyuki DEMACHI Department of Nuclear Engineering and Management School of Engineering The University of Tokyo

Contents

- **1. Introduction**
- 2. Hand Motion Capture
- 3. Behavior Recognition
- 4. Robustness Verification
- **5. Conclusion & Future Work**

1.1. Significance of Nuclear Security

Increasing threats of terrorism after Fukushima Daiichi Accident

- Increasing attention towards the site of nuclear facilities;
- The important functions of nuclear facilities are opened to public through media and internet.

"<u>What can happen by natural</u> <u>disaster also can be made to</u> <u>happen by human design.</u>"

(http://www.mofa.go.jp/mofaj/dns/n_s_ne/page22_000968.html)

1.2. Importance of Insider Sabotage Detection

2017/11/16

1.3. Proposal of Hand Motion Analysis

2017/11/16

1.3. Proposal of Hand Motion Analysis

Hand motion analysis is necessary.
 3D fingertip position is more essential in order to determine the hand motion.

1.4. Proposal of Time-Series Data Analysis

1.4. Proposal of Time-Series Data Analysis

1.5. Research Objectives

Detection of Insiders' Sabotage for Nuclear Security.

Contents

- **1. Introduction**
- 2. Hand Motion Capture
- 3. Behavior Recognition
- 4. Robustness Verification
- **5. Conclusion & Future Work**

1. Introduction

5. Conclusion & Future Work

2.1. New Algorithm of Hand Motion Capture

2017/11/16

2.2. Real-time Hand Motion Capture

Time Variation of Fingertips

✓ Positions of each fingertips was successfully obtained;
✓ The real-time calculating frame rate is about 29.8fps.

(Shi Chen, Kazuyuki Demachi, Tomoyuki Fujita, Yutaro Nakashima, Yusuke Kawasaki, "Insider Malicious Behaviors Detection and Prediction Technology for Nuclear Security", E-journal of Advanced Maintenance (EJAM), Vol.9, No.1, 2017.)

2017/11/16

Contents

- **1. Introduction**
- 2. Hand Motion Capture
- **3. Behavior Recognition**
- 4. Robustness Verification
- **5. Conclusion & Future Work**

3.1. Time-Series Data Conversion

2017/11/16

1. Introduction

5. Conclusion & Future Work

3.2. Motion Classification by Deep Learning

2017/11/16

2017/11/16

Contents

- **1. Introduction**
- 2. Hand Motion Capture
- 3. Behavior Recognition
- 4. Robustness Verification
- **5. Conclusion & Future Work**

4. Robustness Verification

Types of data loss problems

1) Discontinuous frames loss problem

2) Continuous frames loss problem

"<u>Can we still achieve satisfied detection results</u> when some frames of image data are loss?"

2017/11/16

4.1. Discontinuous Frames Loss Problem

2017/11/16

4.1. Discontinuous Frames Loss Problem

Verification Results

	Pushing	Grasping	Cutting	Patting	Turning	Normal
Original (%)	100	100	93.305	100	83.575	71.849
20% of Data Loss (%)	100	100	91.246	100	83.488	70.922
33% of Data Loss (%)	100	100	90.751	100	83.074	70.282
50% of Data Loss (%)	100	100	87.740	100	81.339	68.822

4.1. Discontinuous Frames Loss Problem

4.2. Continuous Frames Loss Problem

Verification Method

N continuous frames

	-									
	0.1	0.3	0.4	0.5	0.5	0.6	0.6	0.7		
	0.2	0.1	0.1	0.3	0.5	0.7	0.8	0.8		
	0.8	0.8	0.9	1.1	1.2	1.2	1.3	1.4		
	1.2	0.9	0.8	0.6	0.3	0.2	0.2	0.1		
	1.6	1.6	1.7	1.8	1.9	1.9	2.0	2.0		
	1.7	2.1	2.2	2.5	2.5	2.6	2.7	2.8		
Randomly Selected as										
data lost frames				K continuous data lost frames						

Randomly Selection of Lost Data

- ✓ Randomly selecting 10 continuous frames from each 100 continuous frames:
- ✓ Randomly selecting 20 continuous frames from each 100 continuous $\Rightarrow 20\%$ data lost frames;
- ✓ Randomly selecting 30 continuous frames from each 100 continuous frames:
- ✓ Randomly selecting 40 continuous frames from each 100 continuous frames:
- Randomly selecting 50 continuous frames from each 100 continuous frames.

2017/11/16

...

30% data lost

40% data lost

50% data lost

4.2. Continuous Frames Loss Problem

Verification Results

	Pushing	Grasping	Cutting	Patting	Turning	Normal
Original (%)	100	100	93.305	100	83.575	71.849
10% of Data Loss (%)	99.998	99.480	89.302	99.998	80.887	68.624
20% of Data Loss (%)	99.600	93.655	89.302	96.709	74.754	68.624
30% of Data Loss (%)	95.663	84.075	81.857	89.312	68.257	60.027
40% of Data Loss (%)	87.432	76.408	78.909	82.773	63.479	57.001
50% of Data Loss (%)	82.226	72.223	76.368	79.088	59.977	53.949

Degrees of Data Loss

2017/11/16

Contents

- **1. Introduction**
- 2. Hand Motion Capture
- 3. Behavior Recognition
- 4. Robustness Verification
- **5. Conclusion & Future Work**

5.1 Conclusion

Objective1:

Hand Motion Capture

- For detection of insiders' sabotage behaviors, a new hand motion detection algorithm was proposed;
- Real-time hand motion capturing system was developed and time series data
 - of each fingertip was successfully obtained with 29.8fps;

Objective2:

Behavior Recognition

- Behavior recognition method was developed by using Time-Series Data Analysis.
- Assumed malicious motions can be classified into different patterns and
 - detected with high accuracy in short time, thus real-time detection is possible.

5.1 Conclusion

Objective3:

Robustness Verification

 Even though dealing with 50% data loss, the accuracy decreases only 2.368% and 19.444% for discontinuous and continuous frames loss problem. Thus, our behavior recognition method can be considered as a robust method.

5.2 Future Work

- The hand motion detection algorithm will be improved to achieve practicality (e.g. recognition finger motion when capturing tool).
- Detailed motion classification and a malicious motion database will be generated;
- Prediction of malicious motions for earlier response.

Thank you for your kind attention!

2017/11/16

Q&A Pages

2017/11/16

Accurate Tracking of Finger Tip Position

Marker tracking for raw DB

Model based estimation

each finger tip

Model based feature extraction

Correlation among time-series of

Probabilistic Estimation of hidden fingers

- Some finger may not visible
 - Need to estimate true position of finger tip
 - Probabilistic estimation due to • history, restriction, experience

Identification of Finger-Hand-Arm behavior

- Database of fingertip time series data ۰ in multi-variable space
- Clustering and classification of motion
- Construction of Database
- Identification by this DB

Virtual display

Estimation of hidden fingers

Information Entropy?

Detection of suspicious behavior

Sign language translation

IoT by hand sign (not by voice)

<u>Kinect v2</u>

Kinect v2 is the new version of game controller technology introduced by Microsoft.

Key Features					
Improved Body Tracking	Tracks as many as 6 complete skeletons and 25 joints per person				
Depth Sensing	512 x 424 30 Hz FOV: 70 x 60 One mode: 0.5–4.5 meters				
1080p Color Camera	30 Hz (15 Hz in low light)				
New Active Infrared (IR) Capabilities	512 x 424 30 Hz				

<u>Kinect v2</u>

Skeleton Frame

Depth Frame

Body Index Frame

Color Frame

Infrared Frame

2017/11/16

New Development for Hand Region Classification

2017/11/16

New Development for Hand Region Classification

2017/11/16

ı .

New Development for Hand Region Classification

Result of Hand Region Classification

Pixels in hand region was successfully classified into different parts: <u>Red pixels: stretched hand region</u> <u>Yellow pixels: bend hand region</u>

Black pixels: background

2017/11/16

New Development for Fingers Segmentation

Segmenting stretched fingers from palm.

Noises

Can be Filtered by analyzing body index data and depth data of Kinect.

2017/11/16

New Development for Fingers Segmentation

Result of Fingers Segmentation

Fingers was successfully segmented from palm.

2017/11/16

K-means Clustering Algorithm

convergence has been reached.

(Ray S, Turi RH, "Determination of number of clusters in K-means clustering and application in colour image segmentation", Proceedings of the 4th international conference on advances in pattern recognition and digital techniques (ICAPRDT'99), Calcutta, India, pp 137–143.)

2017/11/16

Fingers Identification

Result of K-means Clustering Different initial means **Centroid of Cluster** can result in different final clusters. Disadvantage Wrist Point *Fingertip* **Calculation** For each cluster of finger pixels, the fingertip is the pixel which has closest distance to camera.

2017/11/16

Fingers Identification

Bubble Sort Algorithm

To get relative positions all five vectors of finger.

- (1) (P1, P2, P3, P4, P5) \rightarrow (P2, P1, P3, P4, P5) (P2, P1, P3, P4, P5) \rightarrow (P2, P3, P1, P4, P5) (P2, P3, P1, P4, P5) \rightarrow (P2, P3, P4, P1, P5) (P2, P3, P4, P1, P5) \rightarrow (P2, P3, P4, P1, P5)
- $(P2, P3, P4, P1, P5) \rightarrow (P2, P3, P4, P1, P5)$ $(P2, P3, P4, P1, P5) \rightarrow (P2, P4, P3, P1, P5)$ $(P2, P4, P3, P1, P5) \rightarrow (P2, P4, P3, P1, P5)$ $(P2, P4, P3, P1, P5) \rightarrow (P2, P4, P3, P1, P5)$

(P2, P4, P3, P1, P5) → (P4, P2, P3, P1, P5) (P4, P2, P3, P1, P5) → (P4, P2, P3, P1, P5) (P4, P2, P3, P1, P5) → (P4, P2, P3, P1, P5) (P4, P2, P3, P1, P5) → (P4, P2, P3, P1, P5)

<u>Neural Networks</u>

Deep Neural Networks

2017/11/16

Stacked Auto-Encoder

2017/11/16

Stacked Auto-Encoder

How to identify a same hand behavior with different speed

2017/11/16

Future Work

2017/11/16

2D Hand Motion Detection

Human Pose Estimation via Deep Neural Networks

 Using Convolutional Neural Network (CNN) to learn features of images and estimate position of each body joint;

Result (2D positions)

2D Hand Motion Estimation

(Toshev, Alexander, and Christian Szegedy. "Deeppose: Human pose estimation via deep neural networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014.)

2017/11/16

3D Hand Motion Detection

2017/11/16

Detection Model Enhancement

3D Position

By enhanced the detection physical model with body, more <u>complex malicious</u> motion can be detected.

2017/11/16

Detection Model Enhancement

The edge of fingers and tool can be detected by using Canny edge detector

2017/11/16

Proposal for recognition of finger motion when capturing tool

The edge of fingers and tool can be detected by using Canny edge detector

Tool detection and tracking (boundary of tool can be detected)

Parts of hand or body hidden in obstacle

Prediction for Earlier Response

By using deep neural network, features of detected sign can be learned and future malicious motion can be predicted.

2017/11/16

IAEA-CN-254-111

55

Development of the BDBT Coping Training System

2017/11/16

Development of the BDBT Coping Training System

Deep Neural Network Trained by using Nuclear Security Strategies Database

2017/11/16

Thank you for your kind attention!

2017/11/16