• English
  • العربية
  • 中文
  • Français
  • Русский
  • Español

You are here

Nuclear Power in a Changing World

Jakarta, Indonesia

The two major concerns facing humanity today are the pressing need for development in many parts of the world; and the importance of ensuring an effective system of international security. What is not always understood is how these two concerns - development and security - are interlinked, and the positive influence that energy could have on addressing these concerns.

Energy is essential for development. Nearly every aspect of development - from reducing poverty to improving health care - requires reliable access to modern energy sources. When these development needs remain unaddressed, the resulting misery often leads to conflicts and violence, which in turn affect development efforts and impact on regional and global stability.

In this context, it is important to consider the global energy imbalance. Today, 1.6 billion people are without access to electricity, and 2.4 billion rely on traditional biomass because they have no access to modern fuels. I was personally struck by this imbalance on a visit to Nigeria in 2004, where the per capita electricity consumption was only about 70 kilowatt-hours per year. That translates to an average availability of 8 watts - less than a normal light bulb - for each Nigerian citizen.

To put this in perspective: the developed countries that make up the Organisation for Economic Cooperation and Development (OECD), on average, consume electricity at a rate per capita of 8600 kilowatt-hours per year - roughly 100 times higher.

In Indonesia, electricity consumption per capita is about 530 kilowatt-hours per year, significantly higher than many developing countries, but still well below the average in developed countries. As the fourth most populous nation in the world, and a country rich in natural resources, Indonesia’s energy outlook is complex. Indonesian electricity demands have been growing at a rate of roughly 10% per year - a rate that is expected to continue, and will require considerable increases in capacity.

Each year, the International Energy Agency of the OECD publishes an analysis of global energy trends. According to their World Energy Outlook 2006, published just last month, if current consumption trends and government policies continue, we will see a 53% increase in global energy consumption by 2030.

Two aspects of this analysis are especially interesting. The first is the expectation that 70% of the coming growth in demand will be from developing countries. The second is that, for the first time, the International Energy Agency said the increased use of nuclear power would help to meet the increase in energy demand, enhance the security of energy supply and mitigate carbon emissions.

Nuclear energy alone is not a panacea, but it is likely in the near future to have an increasing role as part of the global energy mix. Today I would like to consider why we are witnessing a resurgence of interest in nuclear power, and then review some of the challenges that lie ahead for a country like Indonesia as it embarks on a nuclear power programme.

The Current Global Status

As of October 2006, there were 442 nuclear power reactors in operation in 30 countries. These reactors supply about 16% of the world´s electricity. This percentage has been roughly stable since 1986.

To date, the use of nuclear power has been concentrated in industrialized countries. In terms of new construction, however, the pattern is different; 16 of the 29 reactors now being built are in developing countries, and most of the recent expansion has been centred in Asia. China, for example, currently has four reactors under construction, and plans a more than five-fold expansion in its nuclear generating capacity over the next 15 years. India has seven reactors under construction, and plans an eight-fold increase in capacity by 2022. Japan, Pakistan and the Republic of Korea also have plans to expand their nuclear power capacity.

In the near future, we may well see additional countries in the Asia-Pacific region choosing the nuclear power option. Vietnam, for example, has expressed its intention to move forward with a nuclear power programme. Indonesia has been interested in nuclear energy for many years, and recently announced that it has decided to build two 1000 megawatt reactors on the Muria Peninsula in central Java. Construction is projected to begin in 2010, and operation by 2017.

But the resurgence of interest in nuclear power is not limited to Asia. Other countries such as Turkey are planning to introduce nuclear power programmes, and many others, such as Argentina, Bulgaria, Kazakhstan, and South Africa, are planning to expand existing programmes. It is important to understand the reasons that are driving this renewed interest.

The expanded G8 Summit in St. Petersburg this summer emphasized the importance of "global energy security". During my participation at this summit, I emphasized however that in my view, global energy security means fulfilling the energy needs of all countries and peoples - including the one-quarter of our fellow human beings I just mentioned who have no access to modern energy systems.

Reasons for the Renewed Interest in Nuclear Power

Energy Diversity and Energy Security
For many countries, nuclear power is a way to enhance the security and diversity of their energy supplies. This was also true in the 1970s, when concerns about energy security, triggered by disruptions in oil supply, were a major cause of nuclear expansion in countries such as Japan and France. Today, France depends on nuclear power for 78% of its electricity supply. In Japan the figure is 30%.

These energy security concerns are with us again. For some, diversifying a country´s suppliers and sources of energy is an essential buffer against fluctuations in fuel market prices. For others, energy security concerns may be rooted in the potential instability of political relationships with large oil and natural gas producers.

Nuclear energy has an advantage in this respect. Fuel costs make up only about 10–15% of the costs of nuclear generated electricity, so fluctuations in market prices are of lesser concern. And given the relatively large number of uranium producers, ensuring a reliable supply of nuclear reactor fuel has generally not been a problem.

Carbon Emissions and Environmental Concerns
Another factor driving the interest in nuclear power is that it emits almost no greenhouse gases. The complete nuclear power chain - from mining the uranium and manufacturing the fuel to constructing and operating the reactor and disposing of the waste - emits only 1–6 grams of carbon equivalent per kilowatt-hour. This is about the same negligible emission rate as wind and hydropower and many times less than coal, oil and natural gas.

Increasing international attention is being given to the impacts of carbon emissions from fossil fuels, including pollution and climate change effects, which could lead to higher global temperatures, rising sea levels that would threaten to submerge coastal regions, prolonged droughts and more frequent violent storms. Nuclear power is seen by many therefore as part of the solution.

Last month at the UN Climate Change Conference in Nairobi, ministers from many countries - as well as global business leaders - called for more vigorous action to reduce the threat of climate change. Conference participants agreed to conduct a second review of the Kyoto Protocol in 2008, and agreed on a set of measures including an "Adaptation Fund" to help developing countries adapt to the effects of global warming.

Strong Performance
A critical factor driving the renewed interest in nuclear power - and in my view a key to its continued future viability - is its strong performance record. Nuclear power is a mature technology with more than half a century of operating experience. And the past two decades have seen significant improvements in plant reliability, lower generating costs and a progressively improved safety record.

Key Aspects: Safety, Security and Non-Proliferation

But for nuclear power to continue to be viable as a source of energy, a number of the concerns about nuclear power will need to continue to be addressed.

Nuclear Safety
First, consider nuclear safety. The Chernobyl accident in 1986 was clearly a setback to nuclear power. Many lives were lost. Thousands suffered major health impacts, and there were significant environmental and social impacts. The accident was the result of less than optimal reactor design, compounded by gross safety mismanagement. But ironically, this event also prompted major improvements in our approach to nuclear safety.

A key change was the development of a so-called international "nuclear safety regime". The IAEA updated its body of safety standards to reflect best industry practices. International conventions were put in place, creating legally binding norms to enhance the safety of nuclear activities. And, importantly, both the IAEA and WANO, the World Association of Nuclear Operators, created international networks to conduct peer reviews, compare safety practices, and exchange operating information to improve safety performance.

The international nuclear safety regime over the years has produced many insights on how to minimize specific safety risks. For example, in countries with vulnerabilities to earthquakes, extensive work has been done on safety analysis, leading to solutions through seismic design considerations. In February of this year, the IAEA conducted a Site Safety Review Mission for the proposed Muria Peninsula nuclear plant site, including reviewing aspects related to seismic safety. We will continue to provide support as requested, to assist Indonesia in ensuring that all safety and security considerations are appropriately addressed.

But while the international nuclear safety regime has been demonstrating its effectiveness for two decades, we should not rest on our laurels. As nuclear power technology continues to spread to new countries, as new reactor designs are developed and put to use, and as the licences of existing plants are extended, it is essential that existing safety standards, operational practices and regulatory oversight are adapted - and in some cases strengthened - to ensure enhanced levels of safety into the future.

Nuclear Security
Nuclear security has also become a major concern in recent years. The indiscriminate attacks by extremist groups in many regions has led to the re-evaluation of security in every industrial sector, including the nuclear sector. In the past five years, the IAEA in cooperation with many nations, including Indonesia, has worked on every continent to help countries better control their nuclear material and radiological sources and protect their nuclear facilities. Here, too, the international community is making good progress. While much remains to be done, nuclear installations around the world are now better protected against security risks and vulnerabilities.

Management of Spent Fuel and Disposal of High Level Radioactive Waste
The management of spent fuel and disposal of high level radioactive waste remain a challenge for the nuclear power industry. The amount of spent nuclear fuel produced annually - about 10 000 tonnes - is actually small when contrasted with the 25 billion tonnes of carbon waste from fossil fuels that is released directly into the atmosphere. Experts agree that the geological disposal of high level radioactive waste is safe and technologically feasible. But public opinion will likely remain skeptical - and nuclear waste disposal will likely remain a topic of controversy - until the first geological repositories are operational and the disposal technologies fully demonstrated.

The greatest progress on deep geological disposal has been made in Finland, Sweden and the United States. But it will still be more than a decade before the first such facility is operational. In the meantime, the trend has been to construct and use above-ground interim storage facilities, and many countries are exploring the feasibility of interim storage for 100 years or more.

Nuclear Non-Proliferation
At the same time that we are seeing rising expectations for nuclear power, we are equally witnessing concerns regarding the spread of nuclear weapons and of sensitive nuclear technology. The recent nuclear test by the DPRK and international concern about the nature of Iran´s nuclear programme are two cases in point.

In my view, we are at a crossroads. It is essential and urgent for all parties to renew their commitments to the Nuclear Non-Proliferation Treaty (NPT). The Treaty rests on two pillars: non-proliferation and disarmament. That is, the commitment by non-nuclear weapon States party to the Treaty not to pursue nuclear weapons; and the equal commitment by nuclear-weapon States to move towards nuclear disarmament. These commitments are mutually reinforcing.

The pace of nuclear disarmament has been slow. We still have 27 000 warheads in existence. And it is becoming painfully clear that, as long as some countries place strategic reliance on nuclear weapons as a deterrent, other countries will be tempted to emulate them. We cannot delude ourselves into thinking otherwise.

On the nuclear non-proliferation front, the IAEA plays a central role. Under NPT safeguards agreements, we inspect countries to verify that their peaceful nuclear programmes are not used as a cloak to divert material to non-peaceful uses. But to be effective, it is essential that we are provided with the necessary authority, information, advanced technology, and resources.

But as more countries industrialize, controlling the spread of technology is becoming increasingly difficult. Particularly sensitive are nuclear operations such as enrichment and spent fuel reprocessing - activities that are part of a peaceful nuclear programme, but also can be used to produce the high enriched uranium and plutonium used in nuclear weapons. Countries that have such operations are only a short step away from a nuclear weapons capability.

For some time, I have been advocating that we should consider a multinational approach to enrichment and reprocessing - to ensure that no one country has the capability to independently produce sensitive nuclear material. This would occur in two steps.

The first step would create a mechanism for the "assurance of supply" of nuclear fuel, possibly including a fuel bank to be managed by the IAEA. For countries that use nuclear fuel for electricity generation, this mechanism would serve as a supplier of last resort, thereby removing the risk of having their fuel supply interrupted for non-commercial reasons. It would also reduce the motivation for new countries to invest in these proliferation sensitive operations.

The second step would seek to bring any new operations for uranium enrichment and plutonium separation under multinational control. Over time, these multinational controls would also be extended to facilities that already exist - to ensure that all countries are treated equally in terms of their nuclear capabilities.

Technological Innovation

The future of nuclear power will also be greatly impacted by technological innovation - the development of new reactor and fuel cycle technologies. As might be expected, current nuclear R&D projects are focused on enhancing nuclear safety, reducing proliferation risks, minimizing waste generation and improving economic performance.

Indonesia is a member of the IAEA´s International Project on Innovative Nuclear Reactors and Fuel Cycles. INPRO works to ensure that the future needs of all countries, in particular developing countries, are understood and taken into account when innovative nuclear systems are evaluated and developed.

Many developing countries have been particularly interested in efforts to develop small and medium-size reactor designs. These designs allow a more incremental investment than is required for a big reactor, and provide a better match to grid capacity in many developing countries. They are more easily adapted to applications such as district heating and seawater desalination. Many countries are currently working on developing new reactor designs in this size range, which may well be in high demand in the future.

Infrastructure Needs for New Nuclear Programmes

As a sophisticated technology, nuclear power requires a correspondingly sophisticated infrastructure. For new countries considering nuclear power, it is essential to ensure that the necessary infrastructure will be available. "Infrastructure" includes many components - from industrial infrastructure such as manufacturing facilities, to the legal and regulatory framework, to the institutional measures to ensure safety and security, to the necessary human and financial resources.

When it comes to new nuclear infrastructure, there are three important questions. How much and what sort of infrastructure is needed? What is the desired timing for acquiring it? And should a country develop this infrastructure domestically, or should some parts be imported, leased from vendors, or shared with other countries? Naturally, each country must make its own decisions. The IAEA, however, is also able to provide expert assistance in this area if requested.

Public Perceptions of Nuclear Power

I would note one final aspect that will be important in determining the future of nuclear power. That aspect is public perception.

The public´s perception of risk has a strong influence on a country´s energy choices. As with civil aviation, bioengineering, or any other advanced technology, nuclear power does not come with absolute safety guarantees. What is important is that the risks and benefits are clearly understood.

All members of the nuclear community - scientists, operators and safety regulators - should make every effort to provide accurate and easily understood information to improve public understanding of the risks and benefits of nuclear energy. Common misconceptions can be of great influence in shaping public acceptance of nuclear power. It is essential that the nuclear community be seen as transparent and open in its activities, to increase understanding and confidence in the safe operations of nuclear facilities.

Indonesia and the IAEA: An Active Partnership

For many years, Indonesia has been a strong and supportive partner of the IAEA. On the non-proliferation front, Indonesia is party to the Nuclear Non-Proliferation Treaty, with both a comprehensive safeguards agreement and an additional protocol in force. In the field of safety and security, Indonesia is a party to the Convention on Nuclear Safety, the Convention on the Physical Protection of Nuclear Material, and the Conventions on Early Notification and Assistance in the case of an Accident or Radiological Emergency. Indonesia has also been a full participant in the Asian Nuclear Safety Network.

The IAEA has a large and active technical cooperation programme in Indonesia. This technical cooperation includes many peaceful nuclear applications, some of which are not well known. For example, the IAEA has been supporting the establishment of the first radiotherapy centre in Kalimantan, which should become operational next year and will be a great asset in the diagnosis and treatment of cancer. We are supporting the development of isotopic techniques for evaluating the effectiveness of drugs used to combat tuberculosis. Several new strains of crops have been developed with IAEA cooperation - including sorghum for use as animal feed and rice varieties with improved tolerance for saline soil. Other IAEA technical cooperation projects have focused on using nuclear techniques to assess and manage Indonesia´s underground water resources, to monitor water quality and pollution in Indonesian rivers, and to improve nutrition for livestock.

In 2004, Indonesia and the Agency completed a technical cooperation project to analyse the country´s overall energy system and assess nuclear power options, as well as a second project on uranium exploration and development. We are currently supporting Indonesia´s preparation for its planned nuclear power plant construction.

Conclusion

The need to ensure adequate and reliable energy supplies is directly relevant to development, and to national and international security. As such, energy issues will be a central feature of the global agenda for the foreseeable future.

With its decision to embark on a nuclear power programme, Indonesia is taking a step to expand its energy mix and energy availability. At the IAEA, we stand ready to assist you in finding the solutions that are best suited to your needs and priorities.

More

Last update: 26 Nov 2019

Stay in touch

Newsletter